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ABSTRACT

Constructing effective charts and graphs in a scientific setting is a
nuanced task that requires a thorough understanding of visualization
design; a knowledge that may not be available to all practicing sci-
entists. Previous attempts to address this problem have pushed chart
creators to pore over large collections of guidelines and heuristics,
or to relegate their entire workflow to end-to-end tools that provide
automated recommendations. In this paper we bring together these
two strains of ideas by introducing the use of lint as a mechanism for
guiding chart creators towards effective visualizations in a manner
that can be configured to taste and task without forcing users to aban-
don their usual workflows. The programmatic evaluation model of
visualization linting (or vis lint) offers a compelling framework for
the automation of visualization guidelines, as it offers unambiguous
feedback during the chart creation process, and can execute analy-
ses derived from machine vision and natural language processing.
We demonstrate the feasibility of this system through the produc-
tion of vislint_mpl, a prototype visualization linting system, that
evaluates charts created in matplotlib.

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools; Human-centered computing—Visu-
alization—Visualization design and evaluation methods

1 INTRODUCTION

Data visualization is essential for scientific and technical commu-
nication. The impact of a paper often hinges on the clarity of its
images [22], and outside academia, poorly produced charts may
have catastrophic consequences [29, 38]. Unfortunately, knowing
how to make good visualizations seems to be easier than reliably
putting that knowledge into practice. Visualization experts can
package their knowledge into collections of guidelines, such as
VisGuides [10]. Visualization creators then face the task of inter-
nalizing, remembering, and consistently applying the guidelines
throughout their work. Alternatively, visualization design knowl-
edge can be externally embodied in systems that provide automated
chart recommendations [24, 39, 43], including commercial tools like
Spotfire [34] and Tableau [35]. These tools, however, usually must
own the entire visualization and analysis process, which may fail to
reach sophisticated users in their native computing environment.

The number and variety of collections of vis design guidelines
speaks to the activity and progress in visualization as a growing
discipline. Creators of visualizations have many collections of best
practices to choose from [13, 28, 38]. Chen et al. [5] highlight
the importance of developing open venues for such collections of
guidelines as a pathway for advancing the field of visualization
in general, a call to action which is answered by Diehl et al. [10]
with VisGuides. Guidelines can come as pithy maxims, such as
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“maximize data ink ratio” [37] or as general heuristics like “use
color to maximize perceptive effects” [36]. While collections of
guidelines can adapt to task and context, and grow with new best
practices, it still places a cognitive burden on the chart creator to
understand and remember all of the rules. For instance, a scientist
may not understand what “Chart Junk” is, and why to avoid it [37].
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Figure 1: Automated recommendations from end-to-end systems
simplify the process of making a good visualization, but provide their
users a low granularity of control. In contrast, rendering libraries can
provide a high degree of programmatic control but do not usefully
guide users towards good visualization design. We see visualization
linting as one way to smoothly guide users of visualization libraries
towards the best possible results.

The maturation of visualization as a discipline is also reflected
in the high-quality software that it has produced for managing the
entire process of creating visualizations. One concern with end-to-
end tools is how their design expertise is implicitly encoded in the
architecture of the software; another is how the software is typically
agnostic to task. This is problematic because vis design guidance
can and should change with task [31], with the context of the au-
dience or the application, and with advances in scientific studies
of visualization methods. The effectiveness measure of APT [24],
for example, uses a ranking based on Cleveland and McGill [7]
embedded directly in the structure of the evaluation component. In-
flexibility of vis guidance is a risk with more recent tools as well,
such as CompassQL [42], which applies its rules regarding expres-
siveness implicitly, as well as SeeDB and Zenvisage [39], which
embed their guidelines into their recommendation axes in such a
way that the end user is unaware of which guidelines are at play.
Draco democratizes these approaches by allowing its users to com-
pose their own collections of guidelines through a constraint-based
formalization, although users are encouraged to use carefully pre-
constructed collections [27]. Draco hides the underlying reasoning
about various visualization choices, and precludes the production of
unusual or novel visualizations as each chart type must be encoded
into the recommendation model independently.



We propose to follow a middle road between these approaches, in
which visualizations are created with the aid of automation without
requiring that users give up their usual scientific data workflow or
their ability to tailor guidelines to specific needs. Tarrell et al. sug-
gest that as systematic enumerations of guidelines emerge, such as
VisGuides, we should be able to engage these rules programmati-
cally [36]. Interestingly, Meeks borrows from software engineering
the term linting, a method of automated software quality checking,
to introduce the idea of “vis linting”, along with a collection of asso-
ciated lint rules (though without any concrete implementation) [26].
We seek to realize the aspirations of these works by creating a pro-
totype of a programmatic interface for visualization evaluation by
linting, not unlike the spell check for visualization called for by
Moritz et al. [27]. Figure 1 schematically illustrates how we position
vis linting as an automated analysis that respects existing scientists’
workflows, while empowering them to make better visualizations.

Increasingly, the basic medium in which scientists and data sci-
entists do and present their research is the computational notebook,
such as those supported by Project Jupyter [21]. For example, the
notebook at https://github.com/minrk/ligo-binder docu-
ments, in an accessible way, the extensive data processing required
for the first observation of gravitational waves [23]. Another ubiqui-
tous tool of visualization creation in scientific contexts is matplotlib,
a Python library common in Jupyter notebooks [16]. We aspire to
harness the open-source activity and enthusiasm around matplotlib
and Jupyter to disseminate automated guidance about good visual-
ization design, so our initial work has focused on matplotlib.

Our contributions here are conceptual and practical. First, we
refine the idea of vis linting in terms of rules that are either purely
computational, or that embody algebraic visualization design con-
cepts. Second, we introduce vislint_mpl, a Python program for
evaluating matplotlib visualizations, which demonstrates the prac-
tical feasibility of vis linting. Only a small number of lint rules
have been implemented to date, but we are working now on adding
more. Our vislint_mpl prototype, along with a collection of
possible lint rules and implementation strategies, is available at
http://github.com/mcnuttandrew/vislint_mpl.

2 VISUALIZATION LINT

2.1 Background of Lint
Since the late 1970s, lint systems have been used widely to enforce
coding style and to catch rudimentary programming bugs [17]. A
linter is a program that analyzes another program by applying an
extensible collection of rules. The set of rules, and their parameter
settings, can be configured to taste and selectively ignored as the
situation might require. Linters are either run on demand, similarly
to unit tests, or as a background process that provides graphical hints
to the programmer as they work, similarly to a spell checker.

2.2 Lint for Visualization
Visualization lint, much like traditional lint, it is an automated frame-
work for evaluating a visualization relative to a collection of pre-
defined rules or guidelines. Beyond the static analysis that is con-
ventionally understood as linting, we also envision analysis that
executes the chart-creation code1. A visualization linting system
is thus a configurable collection of functions (lint rules) that each

1We suggest that differentiating between dynamic and static evaluation in
contemporary usage is somewhat arbitrary, as they tend to be used in similar
patterns. For example, unit tests, which must be dynamically evaluated,
may either be run on demand, or as a background process (c.f. the “watch
mode” of the Jest javascript test framework [12]). On the other hand, some
linters can evaluate dependency graphs, which cannot be done statically
within dynamically evaluated languages. We adopt the terminology of lint
to convey the application of a pre-defined (though extensible) set of rules,
rather than program-specific creation and evaluation of tests in the context of
unit testing.

take in a visualization, or code that produces a visualization, and
evaluates it as passing, or else provides an explanation of why it fails.
The language of lint for visualization is a natural evolution of the
checklist approach to visualization guidelines delineated by Tarrell
et al. [36]. Effective rules, like effective guidelines, are granular and
can be evaluated unambiguously.

Linting automates the application of common sense ideas and
principles. While an individual test may seem trivial (e.g. require-
chart-title), adhering to a large collection of potentially unfamiliar
rules can be cumbersome for a non-expert chart maker. We argue
that it is easier to follow a rule if conformance to that rule can be
mechanistically and immediately tested. For example, a standard
guideline is to avoid coloring schemes that are ambiguous to col-
orblind viewers (colorblind-friendly-colors). The availability of
colorblind-friendly options in chart creation systems like Datawrap-
per [1] demonstrate that authors need help identifying which color
palettes are in fact colorblind-friendly. Yet this rule is also often
overlooked, and perhaps it would be better respected if chart creation
tools automatically checked for it. Similar automation could also
implement rules that are usually ignored, such as enforcing the use
of grayscale-friendly color schemes (printable-colors). It is not a
great leap to restructure the guidelines presented in the Visualization
Guideline Repository [40] and other locations as a collection of lint
rules. As a demonstration of this concept, we include a rule list in
our vislint_mpl repo that combines the guidelines of VisGuides,
Meeks’s lint rules [26], and some novel rules of our own.

Not all guidelines apply in all situations; rules suitable for one task
may be incongruous for another [31]. For instance, Meek’s require-
annotation rule would appropriate for visualizations serving an
introduce [28] purpose, but inappropriate for purely exploratory
data analysis. We thus suggest that as creators of visualization
methods and curators of best practices, we can assemble different
rule collections for a range of common tasks. Users can then select a
rule set based on their intended task, and benefit from the associated
guidance generated by vis linting.

Spell checkers do not try to modify the content of text; they only
help improve its quality. Analogously, vis linting does not try to
create or substantively change a visualization, as a recommendation
system might; it only seeks to improve the visualization the user is
already building. For instance, vis lint would not prevent the con-
struction of unusual or exotic charts types, such as Chernoff faces,
instead simply providing tunable and ignorable commentary [6].
Linting has value independent of (and complementary to) vis recom-
mendation systems, which might develop a model of the user over
time, or suggest an ideal chart based on the given data, as described
by Vartak et al. [39]. A linter operates within a fixed set of rules
that do not change with user or data, it merely applies those rules in
a rigorous and consistent manner. We suggest that such clear and
opinionated-but-configurable feedback is a good method for steering
scientists towards better charts, as it both reduces the mystery of
the black-box recommendation system, and provides an informative
enumeration of visualization design principles.

2.3 New Types of Lint Rules
The fact that lint works via execution of a program creates possibili-
ties for either new vis guidelines, or new ways of reliably computing
vis properties for evaluation with respect to a guideline, that would
otherwise challenge purely human evaluation and application. We
highlight two new categories of vis lint rules: computational and
algebraic. At this stage we are outlining the types of analyses pos-
sible with linting, rather than defining exactly when or how these
particular rules should be executed. For the computational rules,
listed below, our thinking is that basic legibility and intelligibility
tasks can be performed by machine, and charts failing these tests
will likely be problematic for human observers.

• legible-text: Text in a chart should be legible enough that well-
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trained optical character recognition, such as Tesseract [33],
should be able to read all labels correctly (as compared to the
label text passed to the API). Our current implementation of
this rule works on especially clear labels, but will need further
training to handle labels overlying other marks.

• no-complex-titles: Having chart titles is important (c.f. Meek’s
require-titles), but chart titles should also not be too complex
(depending on the audience). Our no-complex-titles rule judges
title readability with a Flesch-Kincaid test [19], as implemented
in the Python package textstat [2].

• sufficient-data-ink-maximization: Tufte’s data-ink ratio is sim-
ple to understand but hard to measure by eye [37]. We intend to
compute it by halving and doubling the amount of data charted,
and measuring the pixel changes in the resulting images.

• minimum-saliency: One can set a minimum threshold saliency,
for example if context requires that a chart catches the eye. This
could be executed using the machine vision techniques discussed
by Matzen et al. [25].

• legible-graph: Dunne et al. describe a mechanism for compu-
tationally monitoring graph legibility via easily computed met-
rics [11]. These can be framed as lint rules by placing thresholds
on each of the metrics of interest, as with the crossing-angle and
angular-resolution-min tests of Greadability [15].

• visible-anomalies: Correl et al. describe how chart configura-
tions are susceptible to malicious settings [8]. This proposed rule
handles the particular danger that a histogram with insufficient
bins can hide gaps or outliers in a distribution [9].

Complementary to the computational lint rules above, the frame-
work of Algebraic Visualization Design (AVD) [20] offers higher-
level mathematical evaluations of visualization effectiveness. Some
possible rules are:

• data-dependent-chart: charts should change when the data is
changed, to avoid what AVD calls confusers. This can be tested
by altering the input data (ideally in a way guided by the task at
hand), and comparing the resulting images.

• representation-invariance: charts should not change when the
data is transformed in superficial ways (e.g., re-ordering the
numerical representation of categorical variables), to avoid what
AVD calls hallucinators. Following the technique outlined by
Karve [18], we currently implement this by permuting input data
and comparing the resulting images.

• no-connected-categories: It makes no sense to draw connect-
ing paths between per-category marks because there is no
inter-category interpolation (whereas the same path drawing
makes sense for connecting samples of an underlying contin-
uous trend) [44]. This rule is a specific example of what could be
generally described in AVD as failures of the data-visual corre-
spondence principle.

3 OUR WORK

3.1 Implementation
Our prototype Python-based linter, vislint_mpl, evaluates visual-
izations created in matplotlib against a set of rules. After creating
a matplotlib chart, the user passes the associated axes and figure
objects, along with a configurable list of rules to be checked, to the
vislint_mpl function. The user then receives a list of the rules
that failed, along with an explanation of why. An example of the
type of guidance provided can be seen in Fig. 2.

The implementation of the lint rules in our prototype typically
involve the application of heuristics or inspection of various aspects
of the matplotlib API. For instance, representation-invariance is

Figure 2: Given this chart, based on one in nb 266110.ipynb from the
Github Jupyter notebook corpus [30], our vislint_mpl prototype finds
failures of representation-invariance, require-axes-labels, max-
colors, and no-indistinguishable-series, which should suggest the
underlying problem to the chart creator: too many series. This could
be fixed by splitting into small multiples with another variable, such as
country of origin or vehicle type, or with interactive detail-on-demand.
Whether or not there are automatable ways to create those solu-
tions, the path to better visualizations can start with lint highlighting
missteps.

implemented by permuting the order of both the series present and
the order of the data within each of the series, and computing a
pixel difference between the raster images of the resulting charts,
while Meek’s maximum-pie-pieces is implemented by inspecting
the axes object for Wedge patches. We implement only a subset of
the rules discussed above (and listed in our Github repository) to
establish the proof of concept of our vis linting ideas.

We centered our initial work on matplotlib as it is ubiquitous
among scientists (a recent survey [30] found that around half of the
1.25 million Python notebooks on Github imported matplotlib), and
because it enables automated analysis on the elements of visualiza-
tions specifically. D3, in contrast, can produce and manage entire
web apps, and is less common among scientists [3]. With little or no
modification to their current workflow, matplotlib users should be
able to make use of this technology to produce better graphics.

3.2 Future Work

Our current work has focused on enhancing chart creation for tech-
nically proficient scientists. A natural next step will be to tailor
our linting tools to familiar environments like Jupyter, as this will
enable us to answer Karve’s [18] call for AVD automation in the
context of notebook interfaces. We aim to reach these goals by
developing a graphical feedback linting system for Jupyter in the
vein of the pluggable lint system in Github’s Atom [14]. Based on
that, we could construct an interface that gives in-situ hints to users
as they are creating visualizations, flagging issues and suggesting
more effective alternatives, much like a spell check for visualization.
Further, extending our linter to analyze notebooks, and the entire
cells of code within, would enable greater insight than possible with
analyzing just matplotlib objects.

We would like to implement more lint rules in a greater variety of
categories, such as algebraic rules that better capture the user’s inten-
tions. This may be facilitated by moving to linting a grammar-based
tool like ggplot [41], Vega-Lite [32], or react-vis [4], as manipulating
a more refined API would enable more insightful evaluations. The
language environments of these tools, however, lack the unusually
rich functionality that has facilitated our initial work in Python for
matplotlib (such as the ready availability of machine vision capabil-
ity), which may slow functionality, and may preclude the linting of
non-standard chart types.



4 CONCLUSION

We have described visualization linting as a way to guide scien-
tists and other chart creators towards effective visualizations, and
we showed its feasibility with a working prototype, vislint_mpl,
which evaluates matplotlib graphics against a variety of rules. We
have suggested the programmatic evaluation offered by linting is
actionable, flexible, and extensible, because it provides concrete
commentary during the vis creation process, can be configured to
taste and task, and can execute analyses based on machine vision
and natural language processing. The future development of vis lint-
ing tools will enable chart creators to produce better visualizations
within their current workflows with minimal extra work.
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