
Slowness, Politics, and Joy: Values That Guide Technology
Choices in Creative Coding Classrooms

Andrew McNutt

University of Utah

Salt Lake City, UT, USA

andrew.mcnutt@utah.edu

Sam Cohen

University of Chicago

Chicago, IL, USA

samcohen@uchicago.edu

Ravi Chugh

University of Chicago

Chicago, IL, USA

rchugh@cs.uchicago.edu

Abstract
There are many tools and technologies for making art with code,

each embodying distinct values and affordances. Within this land-

scape, creative coding educators must evaluate how different tools

map onto their own principles and examine the potential impacts

of those choices on students’ learning and artistic development.

Understanding the values guiding these decisions is critical, as they

reflect insights about these contexts, communities, and pedagogies.

We explore these values through semi-structured interviews with

(N=12) creative coding educators and toolbuilders.We identify three

major themes: slowness (how friction can make room for reflection),

politics (including the lasting effects of particular technologies),

and joy (or the capacity for playful engagement). The lessons and

priorities voiced by our participants offer valuable, transferable

perspectives—like preferring community building (such as through

documentation) over techno-solutionism. We demonstrate applica-

tion of these critical lenses to two tool design areas (accessibility

and AI assistance).

CCS Concepts
• Human-centered computing → Human computer interaction
(HCI); • Applied computing → Media arts; Education; • Social
and professional topics;

Keywords
Creative Coding, Interview Study, Power, Reflection, Arts

ACM Reference Format:
Andrew McNutt, Sam Cohen, and Ravi Chugh. 2025. Slowness, Politics, and

Joy: Values That Guide Technology Choices in Creative Coding Classrooms.

In CHI Conference on Human Factors in Computing Systems (CHI ’25), April
26-May 1, 2025, Yokohama, Japan. ACM, New York, NY, USA, 19 pages.

https://doi.org/10.1145/3706598.3713472

1 Introduction
Creative coding is a mode of computer-based work “that empha-

sizes the expressivity of computer programming beyond something

pragmatic and functional” [54], in a manner usually associated

with the production of art [24, 49, 89]. This setting has led to a

huge number and variety of artistic works across numerous dis-

ciplines including visual art [54], music [35], Twitter bots [14],

dance [71], Internet of Things devices [101], digital fabrication [94],

This work is licensed under a Creative Commons Attribution 4.0 International License.

CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1394-1/25/04

https://doi.org/10.1145/3706598.3713472

and more. These artworks are mediated and shaped by a wide range

of creative coding–specific tools, including Processing [80] (and

its JavaScript descendent p5.js [66]), openFrameworks [64], Pure

Data [77], among many others [22, 62]. These technologies often

include custom editors, such as the p5 editor for p5.js, which pro-

vide affordances relevant to the domain. Though niche, this area

is not obscure: creative coding platforms like OpenProcessing [65]

have tens of thousands of users [95].

Beyond being a useful means of creating art, creative coding

has been widely used as a context in which to teach computational

thinking concepts [27, 55, 73, 107]. The immediacy and tangible

nature of creative work provides straightforward incentives for

novices to engage with the ideas of computation, compared to

those taught in traditional introductory CS courses. Creative cod-

ing educators must select from a wide universe of tools, often

developing tools to solve problems they have in the classroom or

to give themselves greater expressivity in their artworks (which

are often cycled back into the classroom). These custom tools often

include standalone editors adapted to particularities of the domain

(such as danceON [71] for choreography) or libraries that enhance

an aspect of the domain (such as p5.sound [76] for making music).

While creative coding practices have been studied from the per-

spectives of artists [61, 79, 93, 100] and students [60], there has been

little [10] consideration of how educators select and design tools

for creative coding classrooms. Which tools are valued and why?

What can be gleaned about this domain, the tool ecosystem, and the

people working in this area from these preferences? Educators, in

this context, necessarily take on the roles of guide and practitioner,

making them keen observers of the hard edges tools have and how

they effect students. Moreover, answers to these questions are likely

to be of value beyond the classroom, as they reflect insights about

art-centered tools and their surrounding communities which are

not captured by individual interactions.

We explore these questions via a semi-structured interview study

with practitioners (N=12) who have taught creative coding and

have built tools, both broadly defined. We find that the reasoning

for technology selection and usage varies widely, but that the con-

cerns expressed in those considerations broadly center around three

themes. First is slowness, referring to issues around the creation

of friction-ful experiences meant to convey pedagogically impor-

tant experiences or systems meant to a support directorial style

of agency (i.e. forgoing craft in favor of artistic decision-making).

Next is politics, regarding the context of the classroom, its rela-

tionship to structures governing control and access to software,

and the power of educators over their students. Finally, there is

joy, capturing playfulness and connecting with communities or

practices. These themes are interwoven; for instance, the types

https://doi.org/10.1145/3706598.3713472
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713472


CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

of joy (and associated learning) that are accessible through slow

tedious interactions with some systems may not be available in

“fast” systems that do everything for you. We explore how these

values play out in two application areas: the role of accessibility

and AI in creative coding classrooms.

Beyond being a compelling community whose needs and inter-

ests are worthwhile to understand, we suggest that looking to the

educators of creative coding is of particular value for HCI. These

communities are often excluded or overlooked, leaving many with-

out the longstanding collaborators and investment that other areas

have enjoyed (e.g. creativity support tools). These communities

have built their own tools, defined their own effective practices,

taught thousands upon thousands of students, and produced myr-

iad artworks. The lessons they have learned are valuable, such as

the value of fostering community, building inclusive documenta-

tion, making some experiences friction-ful, and centering kindness

over techno-solutionism. This work highlights these lessons and

suggests that they might be useful in other areas of HCI.

2 Related Work
Creative coding possesses unique practices and practitioners. Here

we review its practice as well as its use in the classroom, but first we

situate our studied notion of creative coding among related fields.

2.1 Creativity, Coding, and Creative Coding
Creative coding is a broadly porous term, encapsulating many ac-

tivities, tools, and techniques. Some definitions of the term identify

broader qualities of such work and its creators. For instance, Ver-

ano Merino and Sáenz [100] find that creative coding is typified by

uncertainty and an absence of requirements (in contrast to other

types of programming), allowing it to incorporate a wide range of

art forms and types. Vestergaard et al. [101] defined people who

work in this area as being digital artists who are self-taught pro-

grammers. For our work, the single most suitable association of the

term traces back to the formation in 2001 of Processing [80], which

is commonly associated with the term. However, creative coding

is not a monolith and can encapsulate many related areas such as

CSS art [69] and the demo scene [84].

Closely related is the term “media computation” [27, 29], which

captures a related set of qualities as creative coding (intention-

ally drawing a parallel with new media art). Although the bound-

aries are fuzzy, media computation is generally associated solely

with pedagogical goals, whereas creative coding also has a pre-

dominant practical emphasis. Like most computer science–based

creative coding courses [31], the underlying perspective of media

computation curricula might be summarized as teaching computer

science through motivating art applications. Computer science

education researchers have studied potential benefits—regarding

gender diversity, retention, class performance, and so on—of em-

phasizing computing with media in introductory programming

courses [28, 29, 83, 91]. Centered in the classroom, our concerns

are related to these but also draw on the wider field of associated

artistic creative coding practice.

Also nearby are creativity support tools (CSTs), which support

creative tasks through software applications [90]. For example,

the commercial system Adobe Photoshop is a canonical CST for

creating images. Research in this area is sprawling: a recent survey

of CSTs taxonomized 143 HCI papers [21], while another analyzes

111 CSTs centered on art-making [11]. Creative coding also supports

a particular flavor of creative tasks, but restricted to those that

specifically involve coding—which only some CSTs encompass.

2.2 Creative Coding in Practice
Next, we consider works on creative coding in the context of prac-

tical art-making settings.

Artists. At the center of any art making practice are the artists

making the work. Prior work has found a variety of different rela-

tionships between these practitioners and technologies.

Li et al. [51] interviewed 13 professional artists who use code

in their work, identifying themes relating to motivation, choice,

and process. Relevant to our work, many of these artists valued

efficiency, for example, to rapidly explore different compositions

(something our participants also valued), but manual control was

preferred over automation for achieving aesthetic outcomes (related

to mismatches between tool designers and users). Furthermore,

many artists weremotivated tomake their own tools for reasons like

a desire to align tooling with unique artistic styles and to support

intellectual growth. Verano Merino and Sáenz [100] interviewed 5

artists who produce work with code, characterizing their working

practices and highlighting a heterogeneity of approaches to tools,

with some moving from simpler tools (e.g. p5.js) to more advanced

or unconventional development environments.

Closely related are Li et al.’s [52] considerations of the role of

power in CSTs. They highlight the ways in which tools—and their

creators—express power over their users. For example, a CST may

be designed to reduce tasks which the creators deem to be tedious,

but which users might actually find to be useful steps toward their

artistic goals. Such power dynamics are investigated by interview-

ing 11 artists (i.e. users of CSTs) and toolmakers who design CSTs.

Vasudevan [99] interviewed 53 artists, curators, and administrators

in the closely affiliated area of new media art—which breaks from

creative coding by often, but not always, including code as a part.

She highlights the burdens put upon artists by the tech industry

(which will sometimes use them as a form of abstracted research

and development department), while at the same time having their

work forced into ephemerality due to changes from the industry

(such as to APIs or platforms) beyond their control. Dovetailing

with these works, we study creative coding technologies used in

classrooms (e.g. as compared to CSTs used for art) by interviewing

educators and toolmakers who design and use these tools.

Tools and Techniques. Several studies have focused more nar-

rowly on individual tools or tool components.

For example, several works have considered adapting the idea

of version control from software engineering to creative practices.

Verano Merino and Sáenz’s [100] participants observed that the

exploratory nature of their work is not well supported by existing

version control systems. Sterman et al. [93] interviewed 18 creative

professionals (including several creative coders) about their prac-

tices around version control. Some highlighted that high-resolution

git-style version control can sometimes impede joyful creative ex-

pression by causing new work to overfit to older work. Rawn et al.



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

[79] find that code-based artists treat code much as how materials

like clay are treated; this informs the design of a specialized version

control system for Processing. Subbaraman et al. [95] study how

creative coders interact with remixing (an abstracted form of ver-

sion control), finding that reuse and restructuring are common. We

do not dive deeply into a single technological facet as these works

do, but instead focus on identifying high-level issues that might be

considered in the context of any area of creative coding practice.

Technological interventions have also been designed to break

free from conventional, text-based programming interfaces. Dy-

namic Brushes [38] allows custom brushes to be programmed (in

a visual programming environment) in a way that retains stylistic

elements from the artist’s hand-drawn strokes (through a digital

stylus). Stamper [8] and Field [19] provide nodes and wires for

connecting (textual) code fragments on a two-dimensional canvas

in a manner which may help support non-linear art-making.

Artists often act as toolmakers to support their work, and tool-

makers pursue technological interventions they hope artists will

find useful. As summarized in a 2018 report titled Open Source Soft-
ware Toolkits for the Arts (OSSTA) [57], contributors, maintainers,

and authors of such toolkits identified that social factors—such

as inclusivity, funding, community, and leadership—were primary

barriers to carrying out their work. Technical needs (e.g. software

maintenance and documentation) were also areas of concern. Our

concerns are related to OSSTA’s but situated in the classroom.

2.3 Creative Coding in the Classroom
In differentiating media computation from creative coding, we sug-

gested differences in student populations compared to creative cod-

ing courses. In parallel, the communities of people involved in

teaching and toolmaking to support creative coding and media com-

putation courses are mostly disjoint: the former appear largely in

“the art world” whereas the latter is largely in “the computer science

education world.” As such, it is valuable to study the structure of

creative coding courses, and the people involved with them, sepa-

rately from students of intro programming in media computation

or other more well-studied settings.

Curricula. Creative coding is a common means for teaching

about programming and computation (e.g. [25, 55, 60, 97]). Hansen

[31] surveys the curricula of 30 creative coding courses, finding that

they predominantly centered learning to code in the context of artis-

tic prompts, rather than learning to do art with code. In contrast,

many of our participants did their teaching in more art-centered

contexts. This type of course can provide an accessible introduction

to computational thinking for students who might not be otherwise

interested. Greenberg et al. [25] suggest that such introductions can

be more appealing to those often left out by traditional CS curricula

(such as women) by creating a more inviting environment. Partic-

ipants in Chung and Guo’s [10] study espouse similar positions,

highlighting the value of new media art-centered introductions to

computing for women, non-binary, and queer people.

Students. Naturally, creative coding technologies may be expe-

rienced differently by professional artists (in practical contexts)

than by students (whether in a classroom context or not). Mitchell

and Bown [61] performed a lab-based study with 9 creative coders,

of varying levels of expertise, performing a task in Processing.

They identified opportunities for tools that highlight and visual-

ize program state, that “minimise the creative feedback gap” by

shortening iteration cycles, and assist exploration. Through several

offerings of a creative coding course with college and high-school

students, McNutt et al. [60] probe student perceptions of several

features in a slightly modified p5 editor, including custom features

for manipulating colors and shapes via GUI interactions (rather

than coding). Their students offered mixed responses regarding

the iteration-shortening auto-refresh feature, as well as skepticism

about tools doing too much work for them, allowing students to

“skip the sweat” that leads to learning.

Educators. In addition to the students in creative coding class-

rooms, it is valuable to study the teachers of those classrooms.

These educators are often toolmakers and artists, too. Such stud-

ies, thus, contribute to the growing body of work studying artists

in relation to programming tools and practices. Levin and Brain

[49] interviewed 16 creative coding educators to understand the

types of assignments and practices that they draw on in their teach-

ing, while Chung and Guo [10] interviewed 18 new media artists

who teach workshops on computing topics about their motivations

and practices. Our work is centered around the specific issue of

tool selection and design, rather than on the creative coding class-

room as a whole and the practical work that goes on there. That

said, on subjects where our interviews overlapped, our findings

broadly comport with these prior studies. For instance, Levin and

Brain’s [49] participants noted that their classrooms were often bi-

modal, consisting of novices and experts, as well as students skilled

with art and not coding and vice versa. Similarly, Chung and Guo

[10] observed that educators were often motivated to teach to make

new culture and critically interrogate the world around them.

3 Interview Study
To understand the desires, beliefs, and expectations that educators

in creative coding classrooms have for the technologies they use,

we conducted an interview study with practicing educators.

The motivating goal of this study was to answer questions such

as: What are the barriers creative coding educators face, and how
might they be resolved through technological or tool-level interven-
tions? Our interview guide thus included questions about languages

and tools, the role of AI, live coding, course projects, and so on.

However, as we conducted the interviews, participants spoke

at greater length about the values they brought to the considera-

tion of new technologies and the relationships they had with those

and surrounding tools, and less about the technologies themselves

(although that did come up as well). These values fundamentally

inform their technology selection and more broadly their class-

room design. Given this stronger signal, we refocused subsequent

interviews and our analysis of them around these more founda-

tional perspectives—using questions about specific technologies as

a platform to discuss the principles in play.

Below, we outline our study methodology, give an overview of

who participated in our interview (to situate their perspectives

in the context of our work), describe how we analyzed the inter-

views, characterize the limitations of our study design, and offer a

positionality statement.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

Id Name Most Strongly Aligned Labels Self-Specified Labels Example Tool Built

P
Willie

Willie Payne Educator Toolbuilder danceON [71]

P
Nick

Nick Briz Artist Educator Toolbuilder Organizer netnet [63]

PGL Pseudonymized Artist Educator Toolbuilder Organizer

PMatt Matt DesLauriers Artist Educator Toolbuilder Creative Coder canvas-sketch [17]

PA Anonymized Artist Educator Toolbuilder Researcher

PB Anonymized Artist Educator Toolbuilder

P
Allison

Allison Parrish Artist Educator Toolbuilder Poet pytracery [70]

P
Baku

Baku Hashimoto Artist Toolbuilder Video Director, Graphic Designer Glisp [32]

PCassie Cassie Tarakajian Artist Educator Toolbuilder p5 editor [67]

PC Anonymized Toolbuilder

PTega Tega Brain Artist Educator p5.riso [48]

P
Chris

Chris Coleman Artist Educator Toolbuilder Arts Engineer, Technical Producer Maxuino [12]

Figure 1: The background of participants in our study. Participants were asked how they would like to be referred to (anony-
mously, by name, by selected name)—for instance PGL specifically requested to be presented that way. We also asked which
of the labels, “artist, teacher, and toolbuilder,” (relabeled here as educator) they identified with—gray labels indicate positive
alignment while black labels indicate strong alignment. Many participants contributed to tools following the pluralistic no-
tion of contribution espoused throughout: such as by contributing documentation or learning materials, which does not so
squarely fit in a contribution column but we emphasize here. Participants are presented in the order we interviewed them.

3.1 Interview Methodology
The target user population for our study consists of creative coding

educators, particularly those who also develop their own tools

to support their pedagogical or artistic work. Studying educators

who have “only” taught using existing tools would be valuable

for assessing educational practices. However, we were specifically

interested in the intersectional perspectives of artists, educators,

and toolmakers.

In total, we contacted 33 potential participants via email. Par-

ticipants were identified through a convenience sample guided by

prominence on social media, participation in related studies [49],

and referrals from other participants who completed our study

(i.e. snowball sampling). To qualify, participants must have taught

creative coding in some way, and also made, modified, or con-

tributed to the tools they used for doing that teaching. Following

the pluralistic definition of contributorship espoused by communi-

ties in this ecosystem (particularly in the Processing family [68]),

our definition of “teaching” is broad, including classroom-based

teaching, workshops, mentorship, and tutorial writing.

The study protocol—reviewed by a university institutional re-

view board—included a semi-structured interview followed by a

brief follow-up survey. Interviews were conducted over Zoom dur-

ing Summer 2023 and lasted approximately one hour each. Inter-

views were recorded, automatically transcribed, and then reviewed

for accuracy by the first author. Participants received $75 USD for

their participation as an online gift certificate.

In the follow-up survey, participants were asked whether they

would like to be explicitly named or remain anonymous; their

responses inform our disclosure of identities throughout this work.

We chose this approach to explicitly credit the thoughts of these

artists and educators. A draft was sent to participants prior to

submission for review and quote approval. The study instruments

are in the appendix.

3.2 Demographics and Backgrounds
We interviewed (N=12) professionals broadly in the space of creative

coding pedagogy and practice. The participants, referred to asPname

and quoted “like so”, are summarized in Fig. 1. We now briefly

review their backgrounds.

Two participants used they/them pronouns, three used she/her,
and seven used he/him. Their educational backgrounds ranged from

some college-level study to completed masters (6/12) or Ph.D.s

(2/12). All but two are US-based. Many participants (7/12) have

been practicing educators for more than six years.

Nearly all participants (10/12) have taught or actively teach

courses at the university level, although only 7/12 participants have

primary appointments as university faculty. These include courses

for both graduate and undergraduate students. Among them, only

one has an appointment in a computer science department (by

courtesy). Instead, some participants teach in a range of depart-

ments including art, new media, cinema, design, and information

sciences. Others freelance or have positions in software. Nearly all

participants have taught workshops of various types. The length

of these ranged from one day events to 15 week “internships”, and

covered various audiences including middle schoolers (e.g. PTega)
or the general public (e.g. PB). Teaching in non-traditional contexts

or venues was common. For instance, in addition to teaching in

university contexts, P
Willie

taught at the Filomen M. D’Agostino

Greenberg Music School, an alternative school focused on music

education for people of all ages with vision loss (as documented

in his FilOrk [72] work). P
Nick

has taught at Marwen, an arts edu-

cation non-profit focused on low income youth (high school and

below). PC has developed educational software. All participants

have done additional forms of teaching, including production of

documentation, creating tutorials, or mentoring.



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

3.3 Analysis Methodology
Interviews were analyzed via open theming [7]. The first author

coded transcripts (identifying ∼30 topical codes), and then devel-

oped themes, which were discussed with the project team. The

code book is summarized in the appendix. We forgo quantitative

analysis of, say, the frequency with which particular technological

or curricular choices were made or discussed, because our sample

of the population of creative-coding educators is small [102]. Our

qualitative analysis demonstrates that our participants’ opinions

and perspectives are among the concerns surrounding such choices.

In forming our themes, we sought to identify salient connections

between the many interrelated topics (i.e. codes) covered in the

interviews, also reconciling these findings with existing studies of

creative-coding artists [50–52, 79, 93, 95, 100], students [60], and ed-

ucators [10, 49]. In addition to our themes, participants expressed a

variety of practical concerns and difficulties, which were annotated

with codes not directly mapped to any themes or topics in this paper.

Some omitted codes correspond to topics well considered in prior

work—for example, artists studied by Verano Merino and Sáenz

[100] reflected on the “creative coding” terminology, and educators

interviewed by Levin and Brain [49] discussed their classrooms

being bifurcated between students skilled at either art or coding.

Other omitted codes refer to specific technological concerns (such

as the particularities of JavaScript) and ideas that, in our mind,

did not easily synthesize into takeaway lessons or broader themes.

As part of the interview process, the first author wrote memos

summarizing the topics discussed (which the rest of the team read

during the interviews, ∼2 months), which informed the initial topic

codes. Our key themes emerged towards the end of the interview

process. These were held as thematic hypotheses until the full anal-

ysis was undertaken. Discussions were held slowly asynchronously

(∼8 months) and one synchronous discussion during which the

thematic hypotheses were mulled. The first author then coded the

data, iteratively grouping the codes into different possible themes

and topics. These were iterated on (for ∼3 months) asynchronously

(via email and writing) using evidence drawn from transcripts and

then agreed upon in a final synchronous discussion.

3.4 Limitations
Like any study, ours has a variety of limitations. For instance,

many of our participants were—at the time of their interview, or

previously—affiliated with the Processing Foundation, which may

have affected their opinions and perspectives. Many participants

were also based in the United States.

This work is broadly framed within the context of HCI research—

rather than as an education, art, or design project—which affects our

perspective (for example, the recurring theme of how tool-based

interventions can be useful). Related studies might be conducted

from other perspectives. Furthermore, we focused on creative cod-

ing as separate from creativity support tools or media computation

(as outlined in Sec. 2). Although participants’ perspectives about

the term suggest that this distinction is justified, future work might

reexamine similar questions from related user populations.

Furthermore, our focus on educators who have built their own

tools may have biased our results. If we had instead focused on edu-

cators more generally (or only on those that have taught workshops,

as Chung and Guo [10] do), we may have elicited a different set of

views. For instance, adjunct professors teaching large courses may

have less agency over tool selection than those with the control to

build their own tools. Similarly, our results do not reflect the opin-

ions or positions of all creative coders or creative coding educators.

A more broad ranging study, such as a quantitative survey, might

better capture a consensus of creative-coding related opinions.

3.5 Positionality
We are a group of US-based researchers situated in computer science

with a focus on human-computer interaction. Each of us has taught

creative coding (particularly as a means to introduce computing to

non-majors or to high school students) and have researched creative

computing or related support tools. Each of us identify as educators

and tool builders, as well as novice artists or art enthusiasts to

varying degrees. As noted, the original goal of this work was to

use this study as need-finding for subsequent tool building. While

our focus shifted over the course of the interviews to center the

interrogation and consideration of sociotechnical values, this origin

likely inflects many of our reflections. Further, our positions in US-

based higher education lenses our focus. For instance, limiting

our ability to evaluate the applicability of our findings to non-US-

based contexts, in earlier stages of learning such as K-12 (save for

our experience with high schoolers [60]), or in one-off education

contexts such as workshops. Lastly, as researchers housed in CS

we acknowledge that we possess a substantial power (often reified

as funding) compared to our colleagues in areas such as the arts—a

disparity we strive not to magnify via this research (see Sec. 7).

4 Technological Setting
Before characterizing the findings of our analysis, we consider the

technical settings that participants spoke out about working within.

Participants described using a wide range of different tools and

technologies in their teaching. These included tools for the pro-

duction of visual art via text-based coding, such as Processing,

p5.js, openFrameworks, and three.js. They also noted using tools

for producing visuals through GUIs, such as through Touch De-

signer, Unity, nodes.io, and Quartz Composer. Tools for making

music were also used, including Pure Data, MaxMSP, and Tidal

Cycles [59]. P
Allison

used Tracery [14] to create textual art. Less

specialized coding environments are sometimes used to support

creative coding. For instance, PMatt occasionally used web-based

IDEs like Glitch, instead of the p5.editor. Microcontrollers, such

as Arduino, were also often used. Kelleher and Pausch [42] review

programming environments and tools (in 2005) for novice program-

mers (in general, not merely in creative coding), dividing them into

“teaching systems” and “empowering systems.” Our participants did

not express a comparable divide, instead viewing tools for both ped-

agogy and practice. This perspective may be related to our subjects

largely being educators who are also toolmakers.

Participants made their own tools for various purposes, rang-

ing from research, to artistic needs, to spite (PGL), to pedagogical

needs—often forming a virtuous cycle in which technologies devel-

oped for art practice inform those developed for pedagogy and vice

versa. As a research project,P
Willie

made a tool called danceON [71],



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

Theme
Meaning

slowness Tools meant for art-making and pedagogy walk a

difficult line. If too slow and friction-ful, then they

will not be useful; if too fast and seamless, then

students may only be able to express directorial

agency rather than learned craft.

politics Selecting classroom technologies can entwine

students and educators in complex political dy-

namics. While there is no easy solution, explor-

ing tools that center community, control, cost,

and (educator-student) connection seem to be

valuable.

joy Finding joy in creative coding means not only

using tools that are fun, but also helping students

hone their technical and creative practices.

Figure 2: Synopsis of themes.

which consists of a domain-specific language for augmenting chore-

ography through computer vision. P
Nick

made a web-based editor

called netnet [63] that provides interactive tutor style [58] hints

and tutorials to guide users through the production of web pages

and net art as a pedagogical tool. P
Chris

made Maxuino [12] to

provide GUI access to sensors without having to master Arduino

and MaxMSP programming for his own practice and pedagogy. See

Fig. 1 for additional example projects, attenuated by anonymity.

5 Themes
We identified three central forms of values that educators consider

whenmaking pedagogical and technological choices in creative cod-

ing classrooms: slowness, politics, and joy. We highlight findings

from these themes in Fig. 2

5.1 Slowness: On Interface Speed
There is a natural tendency in designing interfaces to try to make

them as fast as possible, to rapidly, and seamlessly [36], automate

tasks that are not essential facets of the task at hand. Yet, this speed

can lead users to race past useful experiences, particularly ones

that are artistically or pedagogically helpful.

5.1.1 Slowing Things Down. Reducing the rate at which different

tasks can be performed gives space for both artistry and learning,

giving users time for reflection and personal growth.

Reflection. slowness seemed to have value for the production

of and critical engagement with art.

PTega suggested that “in the arts, there’s a real value to slow-

ing down and taking the hood off things. Because it lets you ask

critical questions, [such as] if you’re truly engaging with it as a

medium”. P
Baku

argued for the value of integrating tedium into his

workflow, noting that it is useful to “integrate procedural ways of

thinking with more manual or repetitive or more tedious works”.

He went on to describe how a photographer friend intentionally

used an older and slower computer to guide the type of works he

could create. Emphasizing the importance of user agency in this

context, he summarized: “I always want the computer to be slower

than my brain”. PC stressed that UIs and tools that try to speed up

development processes (such as autocomplete) often impeded that

agency by being distracting, impeding the flow of thinking.

Vasudevan [99] observe that new media artists often specifically

desire opportunities to slow the pace of their work in contrast to

the “move fast and break things” attitude sometimes thrust upon

them by tools and external pressures. Li et al. [52] observe that

automation of (what are externally perceived as) tedious processes

can forgo artistically useful experiences. Similarly, Hullman et al.

[34] observe that some friction-ful design choices (in the context of

visualization) can cause a viewer to slow down and pay attention

in a manner they might not otherwise. These sentiments echo the

substantial literature on slow technology [30] and its benefits.

Learning Opportunities. Participants stressed that making an

interface seamless can preclude opportunities for students to learn

how to do things. PTega explained that a “seamless interface has

taken away all that frictionwhich produces understanding”. Growth

that accompanies learning can be uncomfortable [44], as it requires

restructuring and reshaping of previous mental models, and so it

can be usefully educational to allow some friction-ful interactions.

While integrating elements (like documentation) can make a given

task easier, creating some friction to slow that task seems to create

opportunities for learning—a tension known to be present in some

documentation forms [108]. P
Willie

elaborated that “we saw this

really clear distinction between the participants that were really

comfortable with coordinate systems and some of the basic math

in 2D compared with the students who didn’t have that comfort

level”. Technological interventions, such as on-screen rulers or

direct manipulation–based code generation [60], may help those

students to produce artworks during the course. However, that

may prevent them from engaging with the underlying ideas in a

way that promotes long-term learning. McNutt et al. [60] echo this

position, observing that students sometimes find such interventions

deleterious for their learning.

5.1.2 Speeding Things Up. Reciprocally, there can be value in mak-

ing things move quickly. Participants noted that faster interfaces

can help automate the boring parts unrelated to the art and enable

rapid design space exploration.

Directing versus Coding. A key tension in many creative coding

classrooms is their function as both an environment for learning

to code and one for learning to practice art [31]. In the former

an essential value is to impart the basics of computation (such as

for loops, functions, and abstractions), whereas in the latter those

mechanics are less important than the art work produced.

To this end, PGL noted that in his courses, which were on the art

side, they “almost never, like 99% of the time” look at code, because

focusing on such mechanics “reinforces a technocentric perspective

that distracts from a holistic view of the art”. He continued: “It’ll be

like [in] a painting class asking, ‘How did you make that paintbrush

make that paint mark?’”, noting that such questions are “incredi-

bly blinkered”. PGL noted that he expects coding skills to improve

“experientially, through daily practice, rather than through explicit

instruction.” This aligns with how, in other participant’s courses,

students were guided toward a directorial style of agency: it does



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

not matter how you do it as long as it gets done and it serves the

art. P
Nick

noted that “in that directorial kind of approach, students

oftentimes have ideas and they want to develop these ideas” rather

than focus on the craft of coding. This orientation of priorities

shifts the focus from the mechanics of coding to the artistry of the

work. While this can be beneficial, this can also lead to unrealistic

expectations of how quickly students will gain skills as Chung and

Guo [10] observe.

While beneficial for artistry, relentless pursuit of speed in the

interest of directorial agency can be problematic: it may force stu-

dents to become dependent on others to execute their artworks.

P
Allison

noted that if someone exhibits an art work in a public space,

“it’s going to break and they’re going to have to hire somebody

who actually knows what they’re doing to fix their project, and

that’s not giving people the skills and the autonomy and the under-

standing they need to be successful in the field”. P
Nick

suggested

that students should not be excused from needing to learn to code

on their own, commenting that “your ability to communicate with

collaborators that are writing that code for you is going to be very

different” if you are unable to code yourself.

Rapid Exploration. A related concern was enabling smooth and

rapid exploration of the design space. PMatt summarized: “as a gen-

erative artist, it’s kind of essential...to have a tighter and tighter

feedback loop”. P
Baku

echoed this perspective, noting that live-

ness (generally referring to programs that can be modified and

then immediately, or continuously, executed [96]) can be useful for

“tweaking in a parameter or magic number of source code to make

outputs to be more aesthetic”.

To help bring such user interfaces into the world, PMatt, PBaku,
and P

Willie
(and others) had all developed tools (including canvas-

sketch [17], Glisp [32], and danceON [71], respectively) that center

liveness and a close synchrony between input and effect. P
Willie

noted that “every single tweak happens immediatelywith danceON”,

and expressed that one of the key values of Tidal Cycles [59] (a

live musical performance DSL used in FilOrk [72]) was how “the

developer of Tidal Cycles, has put a ton of thought into its liveness”.

Nevertheless, despite embracing the desire for liveness, P
Baku

believed that the technological manifestations will always, perhaps

beneficially, fall short of the ideal: “I think the imagination is my

most real time media”.

5.1.3 Challenge: Navigating Fast and Slow. Whether or not it is

beneficial to speed up certain tasks is particularly difficult to judge

when the users are students.

For instance, PTega observed that sandboxed frictionless inter-

faces like the p5 editor can lead to trouble after the course ends: “A

lot of students have done a whole semester of p5 and they still don’t

understand how to embed a sketch into a website, because they’ve

always just stayed in the editor. So the editor works really well. And

I think one of the drawbacks of having it work so beautifully, is that

it’s very easy just to stay in that safe space, and then never actually

ask: ‘Oh, well, how do I run it locally? How do I stick it on my weird,

esoteric website?’” Making it easy to make art in a course and build-

ing a sustainable art-making practice on the internet are naturally

in tension, as teaching real-world practicalities may impede other

topics. While tool-based solutions might make it easier to mount

p5 sketches in new contexts, it is unclear if this benefits students’

overall technical literacy compared to pedagogical solutions.

One technological design factor that may plausibly reduce fric-

tion is the use of graphical programming interfaces (e.g. Scratch),

which rely less on conventional text-based programming and its

“eccentricities” (P
Chris

). However, P
Willie

noted that he avoided us-

ing GUI-based coding tools because “block interfaces don’t feel like

real coding”. Similarly, P
Nick

observed “I want [students] to learn

how to ride a bike, because they’re gonna get a lot further on a bike

than in some esoteric, you know, device that I make, and then later

[they] have to relearn how to ride a bike.” Weintrop and Wilensky

[104] explored student perceptions of block-based environments,

finding that they are sometimes perceived as being less powerful,

slower (something PA mentioned), and inauthentic relative to tools

used in practice [60, 86]. PGL reified this authenticity in economic

terms: “If I’m paying $60,000 a year, for a degree, I [expletive] well

want to learn something that’s going to be seen as useful when I

graduate.” Indeed, choices about which technology to use—in terms

of its slowness, or any other technical characteristics—take place

within a broader context of concerns and politics.

5.2 Politics: Considering Power
When considering which art-making and pedagogical tools to use,

creative-coding educators must also consider the politics of the

systems in question. As P
Nick

explained it, “we’re all human and

we all have biases, and those work their way into the technology

and get amplified and propagated”. Technologies “are not just tools

that we use, but environments that we’re living in; they’re affecting

us” and guiding the types of work that are made. Our discussion

is organized by how participants navigate power expressed over

them, and how they in turn express power over others—reflecting

Li et al.’s [52] considerations of power in CSTs.

5.2.1 Navigating Power Structures. With few exceptions, everyone

who codes necessarily uses technologies designed by others. Less

technical users (such as novices) are especially beholden to those

external power structures, as they are rarely the authors of their

own tools. In classroom settings, both students and educators are

“users” of many such technologies.

Personal Obligation. A key aspect of power dynamics involves

what is required of users to access these systems.

For instance, the cost of commercial art tools was a prominent

concern. Standard professional tools, such as Adobe’s Creative Suite,

can cost more than $700 USD per year [2]. “I don’t want my stu-

dents to be paying rent on their software,” said P
Allison

, voicing a

position shared by others. P
Chris

emphasized that his department

was hesitant to select Adobe products, because doing so could be

tantamount to “literally burdening your student with a lifetime of

submission”. (In a 2024 FTC filing [87], Adobe has allegedly made it

more difficult to disentangle oneself from using their products.) PGL
noted that one of his main goals in teaching creative coding was

“to reclaim computation as a medium of personal expression” from



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

corporate control. P
Baku

, PCassie, and PNick suggested that building
tools in the browser can address some of these issues, because of the

ubiquity and openness of the web—at the same time, the tendency

of such systems to bit rot (see below) was also a concern.

Beyond costs, another concern pertained to the types of works

that are made easy by commercial tools. PB observed that their

aversion to the Adobe suite is “not even about the cost. It’s about

the agency behind the code”—how can an artist control and own

what they have made if it is locked behind proprietary tools? PGL
echoed this sentiment: “I’m constantly fighting against corporate

tools like Photoshop or Unity...how they try to make it possible to

not have to use code to do it”. He continued “Adobe cannot sell a

tool that allows you to do things that you truly haven’t been able

to see before. If they did, nobody would buy it”. Artists outside of

the classroom are highly aware of these tensions, as in Dahnke

et al.’s [15] recent collection of writings on creative resistance to

technological dominance.

Reconciling these considerations directly with personal values—

and indirectly with their students’ values—can be difficult. PB em-

phasized that they “tried to use software by foundations”—such

as open-source software toolkits for the arts—which they see as

being composed of works that follow the adage “software should be

done by people, for people”. While there are reasonable criticisms

of a foundation model [6] they offer a model for governance and

maintenance (which can be, but is not necessarily, sustainable), and

a signal to potential users about the future and values of that tool.

However, P
Allison

noted that open source tools are rarely free from

uncomplicated funding as well: observing that for many projects

“you don’t have to go far before you start hitting against corporate

interests, government interests, military interests”.

Instead of considering these issues directly, some participants

favored practicalities in technology selection. For instance P
Chris

observed that he ended up using MaxMSP (owned by Cycling ’74)

instead Pure Data (an open source close alternative), because “At

the end of the day, and so I don’t bring [Pure Data] into the class-

room” because while Pure Data “was beautiful as open source, and

it’s sparse, but it’s not friendly.” Deciding between tools that are

aligned with a classroom’s values and ones that are pedagogically

or creatively useful can be challenging. There is unlikely to be a

single unambiguously good choice in this wicked [81] situation.

External Forces. One of the biggest challenges in making tools

for creative communities is not the implementation of complex

features, but rather addressing sociotechnical constraints.

Centralized technologies or services often change, leading to

code-based artworks, teaching materials, and tools being unavail-

able or non-functional (or bit rot). For instance, P
Nick

described how

a change in a Firefox extension API killed a multi-year project. As

a result, he modified his development posture is to prevent similar

damage. PGL offered a historical perspective: “I’ve seen a gener-

ation of artists, who worked with Macromedia/Adobe Director,

make thousands of apps that can’t be seen anymore. And then I saw

another generation of people, five years younger than them, make

a bunch of things with Flash—for example, Newgrounds.com—and

they [made]...thousands of games and interactive artworks...that no-

body can see anymore, because Flash doesn’t work in the browser”.

Although projects like ruffle [82] have revived many Flash-based

projects, PGL noted that “you’re at the mercy whether somebody

has made an emulator, because they’re that nostalgic... Good luck.”

Vasudevan [99] and Snodgrass and Soon [92] echo this perspective,

finding that many artists have been forced to embrace this imper-

manence, due to changing APIs, system updates, or policies (e.g.

auto-playing web audio no longer being allowed). Nevertheless,

considering long-term maintainability as best as possible in the

selection of tools seems an important consideration.

Beyond changes to platforms is how they are organized and

run—that is, their governance. PCassie explained “It’s really difficult

to make decisions amongst a group of people. I really think the

solutions are...structures of power... Governance is such a huge

part of open source projects”—echoing OSSTA’s findings [57] that

sociotechnical issues like leadership and fostering community were

critical the success of arts toolkits. While it is natural for toolmakers

to develop technical interventions that might make these processes

better, this kind of techno-solutionism may be poorly matched with

problems that are better handled through policy.

Surrounding governance are issues concerning governments.

PB, who works in a developing nation, observed that there were

often governmental concerns to navigate which may have shifting

priorities when it comes to supporting the arts, education, or even

internet access. They observed that “I don’t take for granted that

they don’t want to unplug me (again) from the internet.” This obser-

vation guided an emphasis on using local hardware (e.g. Arduinos)

in their courses. Designing tools with instability in mind, rather

than assuming constant internet access on top-tier computers, may

open the door to more contributors and communities.

Less drastically, these bodies also often impose bureaucratic and

legal hurdles. PC recalled how a cloud-based platform she works

with “had to go through this form request from an educational

board. And a lot of it was concerned about like cybersecurity”,

which included constraints like “if they request us to shut it down,

then they expect then the agreement says that we should shut it

down when they request it” which was broadly infeasible for tools

with tens of thousands of users. This is a common issue in US K-

12 schools [9], which can lead to selecting potentially suboptimal

technology to accommodate local laws.

5.2.2 Interrogating Power Over Others. While navigating power

structures associated with existing technologies or the design of

new tools, educators are also by definition in a position of power

in the classroom. Students yield power to educators by investing

time and money at the cost of other opportunities.

Grading and Evaluation. As the contexts in which our partici-

pants taught varied, so too did grading and evaluation processes.

Those who taught in less formal workshop settings tended to em-

phasize positive experiences over critical feedback. For instance,

P
Willie

taught a fifteen-week “internship” with young women of

varied technical background, noting that “it’s never ever, like, ‘that’s

wrong, or that’s bad’”. Similarly, P
Allison

noted that her program

uses a “very gentle art crit... We always applaud at the end, and

we never really dig deep into” students’ pieces. She went on to

observe that this style of critique was designed to support students

emotionally, if not artistically: “I don’t know if it has great out-

comes, but I think the emotional outcomes of it, at least, are good.



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Because I feel like people exit the class usually feeling okay about

themselves”. Building students’ confidence in this subject seems

particularly important, given the well-known obstacles that many

students face when studying computer programming [78].

PGL and P
Chris

noted that the framing of creative coding as art

classroom adds incentives unrelated to grades, but instead on more

student-centered outcomes, such as the quality of the work. For

instance, despite the lack of traditional point-based penalties in

PGL’s courses, “there is a penalty in my course if you don’t have

your work in time for the crit, which is that you don’t get [exple-

tive] crit”. Moreover,PGL sometimes invites (and gives honorariums

to) well-known artists to critique students’ work. The penalty for

not completing work on time is then an extrinsic interaction with

power: students would not have the opportunity to learn how to

make their work better, nor the opportunity to interact with those

whose opinions they might value.

Participants were hesitant about automated critique (as Chung

et al. [11] favor), arguing that such automation was mostly valuable

in computer science courses and not in art. We suggest that auto-

mated evaluation might be more fruitful not on an artistic level (per

the satirical critique found in the video game Art Sqool [74]), but

instead on a craft level, i.e. guiding basic usage and best practices.

Students in creative coding classrooms seem receptive to the utility

of linters [60], indicating that tools could capitalize on learning op-

portunities. To wit, Davis et al. [16] explore an automated critique

system that guides novice filmmakers on best practices.

Community. Power can be expressed by toolmakers over those

who use and contribute to those tools. For instance, P
Chris

noted

a realization that “oh, actually, I have a whole bunch of respon-

sibility that comes with” building and maintaining tools people

use—responsibility being an artifact of power.

Participants broadly viewed the efforts of the Processing Foun-

dation and those associated with it as being a success story in

this regard. PCassie contrasted the intentional kindness espoused in
Processing with other projects: “Have you ever tried to contribute

to a different open-source project? People are vicious”. P
Chris

ob-

served that its success is in part due to “how friendly and engaged

is that community... They think deeply about community, they

think deeply about what contributing is, they think deeply about

all the steps that they take”. For instance, contributions to the p5 ed-

itor [68] can come through code but also “through documentation

or developing teaching resources” (PTega). There is an intention to

make contributing to the project as easy and inclusive as possible.

PGL explained “Lauren [McCarthy] and Taeyoon Choi taught me

what a contributor is [or] can be...that we can decolonize our very

notion of what a contributor is”. Building tools and communities

that are inviting and open to new contributors is challenging and

without obvious technical solutions, but, we add, of pressing value.

5.2.3 Opportunities for Restructuring Power. Power does not need
to be challenged directly, but can be approached subtly or con-

ceptually. PCassie and PB observed that the idea of a “sketch”—

synonymous with “program” in the Processing/p5 ecosystem—was

particularly useful. PCassie observed that this terminology “takes it

from the idea of writing code from, like a business context [and]

having users, to think[ing] of it like an artist’s sketch... The decision

to name it in that way was extremely intentional.” Following these

footsteps may lead to other opportunities for bending labels and

conceptual models of coding and its predominantly professional-

ized toolchains. To wit, P
Allison

observed that there has not yet

been a satisfactory notebook model of a sketch—highlighting the

potential of something like a sketchbook.
Creative coding tools are not merely means to facilitate rapid

input (echoing slowness), but include the materials and commu-

nities that surround those tools, which make it possible to use

them in a fulfilling manner. Verano Merino and Sáenz [100] ob-

served that creative coders often value the quality of documentation

over the quality of the surrounding tooling, which comports with

these perspectives. While tasks like documentation are primarily

sociotechnical labor, there may be some opportunities to ease the

process for novices to contribute to documentation. For instance,

PC thought that making it simpler to contribute documentation

(such as without using git) was potentially valuable. Touching on

the merits of approachability, we suggest that one interface idea

could be to leverage familiar notions of comments, suggestions, and

change-tracking found in word processors, such as Google Docs,

rather than the esoteric concepts used by version control systems.

5.3 Joy: Embracing Play and Process
Lastly, we explore theways joy canmanifest in this context, through

playful experiences that incentivize learning, as well as opportuni-

ties to connect with communities and practices.

5.3.1 Playfulness. A central appeal of creative coding in the class-

room is that it allows learners to “relate to the topic at hand to

their interest and got excited about it” (PCassie). In addition to the

selection of topics, playfulness can result from teaching practices

and the tools themselves.

Playful Teaching. One approach was to make coding feel unin-

timidating and approachable. For instance, PB emphasized the low

stakes in their teaching making space for joyful practices, suggest-

ing that students’ attitudes should be of the mind “you’re not gonna
be on the cover of The New York Times for this project... Let’s have fun,
let’s not suffer”. Similarly, P

Willie
noted that “it’s important to me

that they make something that they feel good about that reflects

their aesthetics and their ideas at the same time.”

P
Allison

explained that “we teach p5.js with the idea of that—be-

cause it’s visually oriented—lots of people can learn pretty well from

visually oriented things.” This idea, about intrinsically motivating

applications of programming, is echoed in prior works on creative

coding [25, 60, 73, 107].

A related strategy was to give students something concrete that

they can own or share. For instance, P
Chris

emphasized the value of

OpenProcessing and the p5 editor, because works made with “both

of those are super shareable”. P
Willie

highlighted that thinking

carefully about course design can yield big payoffs, recalling that

students in his dance internship had a final performance which

“incorporates these really creative ideas and original choreography

and animations that map to that choreography. And, you know,

just like that, the technology facilitated that”.

P
Allison

, PB, PCassie, and PTega contrasted such approaches with

their own more traditional CS education. PB emblematically ex-

plained that “my experience was brutal.When I went to engineering



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

school first, I was miserable”, describing it as “very violent teach-

ing”. Such sentiments are emblematic of “weed-out” courses, which,

as Weston et al. [105] describe, are often found in STEM disciplines

and which create (often needless) difficulties for students.

Outside of formal class settings, PCassie suggested that the suc-

cess of a specific YouTube channel that teaches MaxMSP was “really

popular because [the host] just had a playful energy”, which they

also noted was the signature of prominent creative coding educator

Daniel Shiffman. P
Allison

noted it was important for educators not

just to seem like they are having a good time, but to select tools that

are actually enjoyable for them: “if I’m not having fun when I’m

teaching, then it’s just that it’s a nightmare for everyone involved”.

Building tools that are pleasurable to learn, to teach, and to use in

practice is hard; highlighting a complex HCI and design challenge.

Playful Tools. An important form of play in this context involves

experimentation.P
Nick

explained that students come into the studio

“without a plan, and they start experimenting, and they see where

that experiment takes them”. Supporting this type of unstructured

exploratory programming [43] seems to be an essential part of cre-

ative coding technologies. Prior work [4, 79, 93] has considered how

to support this type of exploration with creative version control,

allowing programmers enough leeway to remain creative and to

provide a historical view of their work to various ends.

A component of play is feeling welcome to do so, yet it is not

always clear which tools or design choices might best help support

the goals of approachability and inclusivity. For instance, P
Nick

offered a historical perspective, observing that “JavaScript is a lot

friendlier and an easier introduction than C++. And now, we’re like:

‘JavaScript, is that really friendly enough?’”. In contrast,PGL argued
“JavaScript is not specifically really inclusive... There’s intense use

of non-alphanumeric characters, semicolons, and different” sym-

bols, suggesting that inclusivity would require design choices that

align programming languages with everyday speech. Beyond the

tools themselves, PGL observed that there are other factors: “What’s

inclusive is, are the faces of the people who are making these things.

What’s inclusive, is the documentation that’s written in a way that

maybe doesn’t assume you already understand the documentation

you’re trying to read about.” However joyful and inclusive sys-

tem features may be, there are still the considerations about the

surrounding politics of the system—echoing our previous theme.

5.3.2 Process. The role of educator can be seen in many ways, such

as conveyors of information, as arbiters of grades, or exemplars of

ways of being. To the last of these, some participants saw their role

as showing students a way of being—rather than amere course-long

engagement—and that demonstration of process was, in essence, a

joyful invitation to be a part of an artistic community.

Joy in Coding. Some participants highlighted joyfulness as a

specific endpoint through which engagement with a process may

lead. In her teaching, P
Allison

says “I’m trying to impart to my

students some of that joy of doing computer programming, be-

cause it is a joyful thing. For me, that’s the primary reason that

I do it is that it brings me happiness”. That is, she attempted to

impart not just her love for coding, but rather the process in which

that love manifests, so that students might replicate that feeling

themselves. PCassie echoed this position, observing that they strove

to help students “feel like part of the [creative coding] commu-

nity and like [they] belong”—emphasizing that practices like these

are rarely individualistic, but rather are part of something larger.

This connects with prior work [10, 25] that describes how creative

coding can facilitate a sense of belonging for people sometimes

otherized in computing adjacent areas.

Others were more explicit about the process itself. An essential

part of PA’s teaching is an emphasis on demonstrating process:

“You gotta get your hands in the clay. And I use that literally and

metaphorically... It’s made me a pretty strong proponent of teaching

students through doing and allowing them to develop their own

practice and process”. This practice is analogous to live coding (i.e.

writing code during lecture rather than coding as performance) as

increasingly used in traditional computing classroom settings [85].

This perspective governed not just attitude, but also selection

and style of pedagogy. P
Chris

noted that “they’re going to have to

keep learning for the rest of their life if they’re going to stay in cod-

ing. And so I need to enforce that process right away... The actual

technical competency is a little bit less important” compared to the

experiential process of debugging and finding resources. Similarly,

PCassie noted that they had “been super inspired by Daniel Shiff-

man. I really like his approach of being open to making mistakes

and debugging in front of you”. Demonstrating process then is not

about perfection, but showing the holistic cycle of doing work.

Some participants noted that there was a relationship between

joy and rigor. For instance, P
Allison

commented that “part of the

joy of computer programming for me is, is its rigorousness, the fas-

tidiousness with [which]...you need to approach it.” She continued

that “there’s a certain joy in learning a programming language

and learning to talk in the way that the programming language

wants you to talk and learning to solve the problems in that way”.

Understanding the beauty in truth tables, binary, and the physical

presence of a computer are accessible through concrete engagement

with technical ideas and concepts.

Joy in Engagement. PA observed that some levels of engagement

were only possible with a certain level of proficiency and therein

investment: “conceptual play that often happens when you talk

about art at that level. Right? It’s like, suddenly, you’re having this

kind of higher-level conversation about movement and significa-

tion.” Echoing Shneiderman’s [90] “low thresholds, high ceilings,

and wide walls,” an important component of tools is the facility to

allow not just introduction but expanse. P
Chris

summarized that

in p5, “you can be expressing yourself, like day two, pretty easily...

And then there’s a whole other layer of ‘Oh, holy [expletive], I can

actually do things! I can like turn particles into graphics buffers, and

do GPU compute stuff.’ And there’s a whole other layer that gets

unlocked that maybe isn’t there for something like p5.js”. While

tools like p5 may offer a welcoming invitation, its guard rails may

impede access to richer topics and design experiences.

Connecting with elements of slowness, PA noted that “it feels

like art is continually this process of reflection in action. You’re

never not reflecting. And sometimes it can be hard. I think, maybe

sometimes it’s indicated by getting stuck”.P
Willie

similarly observes

that “I really like reflection in this type of work of like, students do

something and then they write about what was hard and what was

easy and what they want to do next.” We suggest that there may



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

be additional space for tool-based intervention in order to prompt

reflection, a space explored by QuickPose [79] (in which reflection

is prompted through a process change) and LitVis [106] (where

reflection is directly prompted via linted questions).

5.3.3 Joyous, Not Toyish. Tools for creative coding need to avoid

being so playful and toy-like that they cannot be used for serious

work, while also being not so serious and feature-rich that they

cannot be approached by beginners—as PCassie put it “you want a

tool to invite you in”. At one end of the spectrum is Compton’s [13]

notion of tools for casual creators, capturing those tools that en-

able their users to make fun and interesting artworks that are not

expected to be of a production quality. While making it easy to get

started is important (as P
Chris

stresses), selecting the right balance

of floor and ceiling height [90]—e.g. does a tool leave room to grow

or just make it easy to get started—does not have a single answer.

Using multiple tools with different characteristics might help

techniques learned in one context transfer to others. In one of

PGL’s courses, code-based artwork with p5.js is sequenced before

professionalized GUI-based tools like Touch Designer, so that the

basic computational thinking from textual programming can still be

gained while also learning industry-standard tools. This highlights

an inherent difficulty in creative coding courses: many works made

simple by tools like Processing are often also unimpressive com-

pared to what is possible with professionalized tools. Paradoxically,

however, the lessons about computational thinking available in

tools like Processing are often more valuable than those in higher-

end professional tools. Striking the right balance between enabling

impressive designs and pedagogically valuable designs is a wicked

problem with no one answer, but, we suggest there are opportuni-

ties to explore designs that support offer high-level joyful control

while still imparting transferrable computing knowledge.

6 Tool Design Considerations
The themes established in our analysis can help understand the

original question for this work: How should tools be shaped in

the context of creative coding classrooms? Some aspects of this

question have already been touched on. For instance, a high degree

of liveness [96] can be a valuable way to make an interface feel

fast and dynamic, fomenting joyful experiences that allow flow

states—but this can come at the cost of opportunities for slow,

careful reflection about the values of the work at hand.

Next, we use the themes as critical lenses to consider two addi-

tional facets of tool design that frequently arose in our interviews:

accessibility and AI. The types of questions that can be asked about

these facets in the context of our themes are exemplified in Fig. 3.

6.1 Accessibility
A basic belief expressed by most participants was that students of

all abilities and backgrounds should be able to use the tools used in

class. Disabilities come in many different forms, kinds, and contexts.

For instance, a substantial amount of P
Willie

’s work focuses on

improving the accessibility of creative technologies. For instance,

his FilOrk [72] specifically aims to make live coding accessible and

enjoyable to blind and low-vision students. He highlighted the

specific value of the web to help them work “on their own devices.

And this is like really important for the accessibility aspect of it,

because the students with some vision are using iPads that they re-

ally like because they can zoom and move around the screen really

well”. For instance, P
Chris

noted that his students valued coding

from their own devices rather than through a browser. P
Willie

added

that the “benefit of moving from something that’s installed with

your hardware to something in a browser is that...it can be accessed

across a ton of different devices. In this case, a ton of different

screen readers”. While this kind of democratization is valuable, it

can be in tension with notions of authenticity. In designing courses

and tools, those in power need to navigate these tensions, and ask

(political) questions about whose needs to need to be centered.

Platform support for accessibility has been slow going. Potluri

et al. [75] observe a wide array of accessibility challenges in compu-

tational notebooks for blind and low-vision users. P
Allison

echoed

these findings, noting that “I’ve been teaching with Jupyter Note-

book for a really long time, but they just barely in the past couple

of years have been working on making it screen reader accessible”.

Referring to tools like Scratch, P
Willie

similarly noted that “I didn’t

want to do blocks because of accessibility considerations”. Devel-

opers of prominent projects are aware of this need. PC noted that

a priority for her in open-source work is “thinking about how [to

make tool development] accessible and friendly for all the other

users within the community” besides just able-bodied developers.

PMatt observed that there seems to be a place for AI-driven tech-

nologies in making some creative coding tasks more accessible,

such as by creating “a hands free coding system” mediated by AI—

potentially being beneficial to those with physical disability. PGL
echoed this position, specifically valuing some of PMatt’s recent

experiments. Beyond shifting attention towards creative or directo-

rial style agency, reducing slowness latent to some tools can make

those tools accessible to a wider audience—particularly those for

whom the affordances of those tools are not well aligned.

Not all accessibility challenges arise from commonly considered

disabilities like blindness. For instance, P
Allison

observed that “an-

other dimension of accessibility is neurodivergence and...especially

how to make the kinds of programming that I think are joyful

accessible to people with all kinds of with all kinds of different

learning styles, and all kinds of different ways of thinking. And un-

derstanding that can be difficult, as we have this history of teaching

computer programming in a particular way that kind of only works

for certain kinds of people.” Similarly, P
Nick

, PMatt, and P
Allison

noted that language barriers were also common, with P
Nick

observ-

ing that CSS “eventually starts to become intuitive for [English-

speaking] students”, whereas the vast array of properties can be

hard to connect with for others (such as Spanish or Chinese speak-

ers). Chung and Guo [10] echo this observation, noting that, for

Korean students, the English aspects of common programming lan-

guages can be scary—although this feeling can pass with familiarity.

Huang’s wenyan [33] language interrogates the English-language

bias of many programming languages by supporting ancient Chi-

nese. P
Allison

noted that some basic assumptions latent to creative

coding technologies were not held by all cultures, observing that

p5’s model of “art is a two-dimensional surface that has shapes on

it, right? But that’s a drawing from a particular tradition of art. That



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

Theme Generic Accessibility AI

slowness Does this tool increase or decrease op-

portunities for reflection?

For whom does this system become

unduly friction-ful?

How does this tool give or take

agency?

politics Who does this tool empower or dis-

empower?

Whose needs and abilities are cen-

tered? Whose are marginalized?

What values are trod upon through

this tools usage?

joy How does this tool allow play? What

new horizons of joy does it enable?

Whose joy is being prevented? Does this tool boringly reproduce

things that already exist?

Figure 3: Example questions about two application areas formed from our themes, as well as generic questions for any tool or
area. We use our themes as critical lenses, although they could be used as generative or analytical framings [5].

is not universal”. Similarly, PB noted that there was an element of

classism in who was allowed to use these technologies, highlighting

the huge cost associated with institutional learning or just having

the time to dedicate to pursuing free resources.

Accessibility is contextual (and political), and so a tool choice

can be inclusive, be inviting, and be joyful for one person, but be

exclusionary to someone else.

6.2 AI
The role of AI-driven tools in the classroom loomed large with par-

ticipants, eliciting strong reactions of dread (such as from P
Allison

),

disinterest (such as from P
Baku

), and in some cases optimism (such

as from PMatt). Participants touched on both tools for code (e.g.

ChatGPT) and image (e.g. Adobe’s Firefly) generation.

Several participants stressed that the type of work that AI-based

tools can help produce was “boring” (PGL) and unjoyful. P
Baku

observed that “AI can improve our efficiency or productivity, but it

doesn’t improve the joy or satisfaction of making something from

scratch”. He went on to observe that this was a key motivator in

the design of Glisp [32], which is “oriented to totally opposite the

way of efficiency or productivity is, it’s just for making that pro-

cess of drawing graphics more satisfying or more joyful”. Similarly,

P
Allison

commented that “for me, [using AI] is completely joyless

because you aren’t engaging in those problem solving skills, and

you aren’t like engaging with the materiality of the programming

languages themselves”. PB likened the usage of GPT to the polit-

ical problems associated with using Amazon’s Mechanical Turk.

Jiang et al. [39] explore the harms that the use of art in AI can cause,

leading to reputational damage or copyright infringement.

Some participants added nuance to this view. P
Chris

observed

that LLMs can help students get to the creative part of creative

coding and not linger in the slow parts: “Because maybe it means

that actually everybody can get a little bit further to making art

a little bit quicker, because they’ve got an AI assistant. I’m okay

with that.” Similarly, P
Willie

observed that it can be useful for “the

kind of menial tasks, like, you just need some drum groove that’s

interesting” and to “help you generate initial ideas”. A participant

with teaching experience in Verano Merino and Sáenz’s [100] study

noted that, even in beginner-friendly tools, the “blank window” and

sense there is “a flood of things you have to know in the begin-

ning” are obstacles that confront students—barriers which might

usefully be addressed through AI-style tooling. Like us, Jonsson

and Tholander [40] connect friction to automation, finding that AI

systems can help reduce friction in the context of creative coding,

but in doing so can lose some useful friction that prompts creativity.

Circumventing the debate about AI tools, P
Nick

noted “I’ve been

using tools that generate code for as long as I’ve been coding”, con-

necting generative coding systems with tools like Dreamweaver.

Further, P
Nick

stressed that his position as an educator was often

to help convey literacies of different sorts, such as for code, for the

internet, or for art. To this end, he noted “prompt engineering could

be one of these new literacies,” and “that in terms of my role in

[conveying those literacies], I don’t think it’s changed”.

Generative AI tools geared toward introductory coding (as in

CodeAid [41]) and creative coding (as exhibited by Spellburst [4]

or Keyframer [98]) are becoming more prominent. Ippolito [37]

describes a recent creative coding-adjacent course in which AI was

centered, finding that it was broadly useful. Google Labs has an

upcoming Chrome extension called Shiffbot [46] that provides an

LLM-based assistant in the p5 editor that emulates the teaching

style of Daniel Shiffman [88]. This type of interactive tutor system

seems promising, in that it may still allow users appropriate time for

reflection prior to intervention (i.e. supporting appropriate slow-

ness), which Wang et al. [103] observe is an essential component

using LLMs for creative coding tasks. Similarly, by emulating Shiff-

man’s playful style—much in the same way that PCassie observes
that their style was guided—the joy of coding might similarly be

conveyed without exchanging it for an unintuitive black box and

may cause students to forgo valuable learning opportunities (as

Lau and Guo [47] find that some educators fear). We add that such

a system is naturally liable to the whims of corporate winds. For

instance, if the price of LLMs radically increases (such as due to

regulatory or market shifts), the viability of this style of assistant

as a free tool will be limited. PTega framed this pricing as an equity

issue (reflecting politics), noting that “because if you can pay for

the better subscription with OpenAI, you get much better results

than the generic free stuff that I’m sure all of our students are using.”

Lastly, PC noted that perspectives can change with time, likening

acceptance of AI-based tools to the gradual way she accepted auto-

complete in her phone. Perceptions of AI systems will change as

their capabilities and ubiquity change.

7 Discussion
This paper explores one facet of the creative coding landscape,

namely, the values that creative coding educators use when consid-

ering what tools to bring to their classrooms and what tools to build

for themselves. We identified several themes (slowness, politics,

and joy) which can be used to critically reflect on the values a given

tool might bring to the fore, highlighting takeaways for each theme

(Fig. 2). In doing so, we considered different areas in which technical



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

intervention or innovation might be useful, but also a variety of

areas where techno-solutionism might yield unnecessary tools. We

applied these themes to considerations of tool accessibility and the

role of AI in creative coding tools. We conclude by reflecting on

the context of this work and its connection to future HCI research.

Humans and Their Identities. The core identities represented in

this work are those of artist, educator, and toolbuilder—as well

as their intersections. These often appear to coalesce naturally

(with, as P
Allison

and P
Nick

described, artistic practice sometimes

informing teaching or tool building and vice versa), but there are

times when these characteristics come into tension.

For instance, one of the most common stances for tool builders is

to metaphorically smooth the edges off interfaces (cf. Krug’s Don’t

Make Me Think [45]), which can conflict with the friction (i.e. slow-

ness) that is sometimes valuable for education (such as to learn

craft) or artistry (per Li et al.’s [50] observation that artists prefer

granular control over their tools). Disentangling these interwoven

tensions involves reflection on the intent and domain of the work.

As these are fundamentally human issues, we stress that there is no

single preferred path through this thicket of concerns—just as how

each of these identities carries with them different relationships to

our themes. Instead, we suggest merely that these dimensions are

worth at least considering in tool design and selection.

As a thought experiment, consider using Google Sheets as the

foundation for a creative coding course—which is, at the very least,

a plausible way to make art [20]. While there is arguably little per-

ceived joy in writing spreadsheet formulas, there is a recognizable

kind of joy in mastering the functional programming concepts la-

tent to spreadsheets—and perhaps a useful slowness to interacting

with those concepts. Similarly, there is joy in being a part of the

vast community of people who use spreadsheets and engaging with

the rich ecosystem of resources (e.g. message boards) surrounding

them. Some may object to the politics of using corporate-owned

technologies—however, the amount of resources behind such tools

may make it more accessible. Or, if the course is online, it may

preclude usage in parts of the world where Google is blocked. What

then is the answer? Alternative spreadsheets could be used, new

ones could be developed, or it could be decided that these tradeoffs

are acceptable. We suggest considering how one’s values connect

with these sociotechnical concerns offers a valuable entry point for

reflecting on and approaching these issues.

Technology and Their Features. Throughout, we have noted areas
where additional (technological) research might be useful, how-

ever we stress that these tasks should be pursued in community.

While P
Allison

noted that “I do think the p5.JS tooling could be bet-

ter”, we suggest that these are predominantly community-level or

maintenance-level tasks, given that “p5.JS, in terms of their mission

statements, and so forth, they basically said, we’re not introducing

new features, unless they specifically address inclusivity” (PGL).
That is, while things could always be better, we suggest that build-

ing the next great creative coding editor or tool is not the only

critical task.

For instance, while PMatt was enthusiastic about a professional

quality set of generative art tools (e.g. something like Photoshop for

generative artists), he expressed significant hesitancy: “practically

speaking, it’s really hard to imagine how that works. Because all

these tools approach things like frame rate and render loops and

things very differently.”

Instead the most impactful approach seems to be centered on de-

veloping sociotechnical systems and improved affordances around

those tools. For instance, making it easier to contribute to documen-

tation by removing the barrier of GitHub pull requests (as PCassie
and PC highlight), or developing systems that simplify accommo-

dating political or regulatory burdens. Similarly, creative coding

is not a monolith, and there are many other associated practices

which may have other needs, concerns, and values, such as in new

media art [10], permacomputing [56], or the demo scene [84].

Creative Coding and Its Research. Despite some participants chaf-

ing at the term creative coding—PB objected that “all code is cre-

ative”—we suggest that this is a useful area for HCI research. Peo-

ple in this area have complex challenges. They have had several

decades of intricate and involved independent tool development.

While academic HCI has recently demonstrated an interest in cre-

ative coding [4, 8, 10, 60, 79, 94, 95], PGL commented on HCI’s long

disinterest in the code-based art, admonishing “creative coding has

been around for 25 years. What took you guys so long?” We echo Li

et al.’s [51] call to see artists as technical collaborators rather than

merely subjects. It is easy to think of creative coding as yet another

genre in which HCI researchers might appear, create tools, write a

paper, and parachute away [53]. For this, or any other community,

such behavior is an ineffective pattern of research that leads to

undue maintenance burdens [3], tools not needed, tools that are

too advanced or otherwise not usable by their intended users, or

just tools that are not released—Frich et al. [21] report that most

(>75%) of surveyed CSTs were unavailable to the public.

There is substantial space in which to support this community

without being extractive. For instance, research on the p5 editor

might include making enhancements to the public version of it,

rather than merely creating irreconcilable forks. Making research

tools open-source and freely available offers at least some remedy

to these issues, as others can remake and remix those artifacts.

The recent artifact badges at CHI [1] are a useful development for

this type of engagement. Yet, free and public release of software,

alone, is far from perfect: open-sourced academic abandonware is

common, potentially creating non-trivial maintenance burdens [3,

26] and unkind online environments (per PCassie) without careful
community curation.

Echoing McCarthy et al. [57], we highlight that monetary fund-

ing is key area of potential support. Some corporate policies have

made steps in this direction—to this point, PB valued of Google’s

Summer of Code program being open to students outside of the

USA [23]. Yet, in the USA there is little funding for the arts com-

pared to other technical areas. Furthermore, as Vasudevan [99]

observes, artists are often treated as a form of research and devel-

opment for larger technological interests. Improving this situation

might involve forming partnerships with artists and artist organiza-

tions (as advocated by Devendorf et al. [18]) in general and in grant

proposals, or seeking policy changes to value the (technological)

work that artists do.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

There is a lot for researchers to learn from the creative coding

community—about building tools that are useful for a wide range

of people, about community-oriented initiatives, and about align-

ing technology with the values of the people who use them. How

researchers might reciprocate and best support this community

remains to be seen—so it is up to us to actively shape and direct

our approach in thoughtful and meaningful ways.

Acknowledgments
We thank our participants for sharing their time and insights with

us. We appreciate the helpful pointers and commentary given to

us by Jean Salac, Brent Bailey, and Jeffrey Heer. We are also grate-

ful for the useful suggestions provided to us by our anonymous

reviewers. This work was supported by the Moore Foundation and

the University of Chicago College Innovation Fund.

References
[1] ACM. 2024. Artifacts at CHI 2024. https://chi2024.acm.org/2024/02/08/artifacts-

at-chi-2024/.

[2] Adobe. 2024. Adobe Creative Cloud. https://www.adobe.com/creativecloud/

plans.html. Accessed: 5/22/2024.

[3] Derya Akbaba, Devin Lange, Michael Correll, Alexander Lex, and Miriah Meyer.

2023. Troubling collaboration: Matters of care for visualization design study.

In SIGCHI Conference on Human Factors in Computing Systems. 1–15. https:

//doi.org/10.1145/3544548.3581168

[4] Tyler Angert, Miroslav Suzara, Jenny Han, Christopher Pondoc, and Hariha-

ran Subramonyam. 2023. Spellburst: A Node-based Interface for Exploratory

Creative Coding with Natural Language Prompts. InACM Symposium on User In-
terface Software and Technology. 1–22. https://doi.org/10.1145/3586183.3606719

[5] Michel Beaudouin-Lafon, Susanne Bødker, and Wendy E Mackay. 2021. Genera-

tive theories of interaction. ACM Transactions on Computer-Human Interaction
28, 6 (2021), 1–54. https://doi.org/10.1145/3468505

[6] Ben Fry Resigns 2023. Ben Fry resigns from the Processing Foun-

dation. https://www.reddit.com/r/processing/comments/1708ikb/ben_fry_

resigns_from_the_processing_foundation/. This reddit post preserves con-

text of an event that was splayed across several social media platforms..

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative research in psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/

1478088706qp063oa

[8] Cameron Burgess, Dan Lockton, Maayan Albert, and Daniel Cardoso Llach.

2020. Stamper: An Artboard-Oriented Creative Coding Environment. In SIGCHI
Conference on Human Factors in Computing Systems Extended Abstracts. 1–9.
https://doi.org/10.1145/3334480.3382994

[9] Jake Chanenson, Brandon Sloane, Navaneeth Rajan, Amy Morril, Jason Chee,

Danny Yuxing Huang, and Marshini Chetty. 2023. Uncovering Privacy and

Security Challenges In K-12 Schools. In SIGCHI Conference on Human Factors in
Computing Systems. 1–28. https://doi.org/10.1145/3544548.3580777

[10] Alice Chung and Philip J Guo. 2024. Perpetual Teaching Across Temporary

Places: Conditions, Motivations, and Practices of Media Artists Teaching Com-

puting Workshops. In ACM Conference on International Computing Education
Research. https://doi.org/10.1145/3632620.3671095 To Appear.

[11] John Joon Young Chung, Shiqing He, and Eytan Adar. 2021. The intersection of

users, roles, interactions, and technologies in creativity support tools. In ACM
Designing Interactive Systems Conference. 1817–1833. https://doi.org/10.1145/

3461778.3462050

[12] Chris Coleman. [n. d.]. maxuino. https://web.archive.org/web/20230331113047/

http://www.maxuino.org/.

[13] Kate Compton. 2019. Casual creators: Defining a genre of autotelic creativity
support systems. University of California, Santa Cruz. https://www.escholarship.

org/uc/item/4kg8g9gd

[14] Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: an author-

focused generative text tool. In International Conference on Interactive Digital
Storytelling, ICIDS 2015, Copenhagen, Denmark, November 30-December 4, 2015,
Proceedings 8. Springer, 154–161. https://doi.org/10.1007/978-3-319-27036-4_14

[15] Sarah Dahnke, Christina Freeman, Shawn Escarciga, Misha Foley, Caitlinand Ra-

binovich, Lydia Jessup, Tega Brain, Jasmine A. Golphin, and Lil Miss Hot Mess.

2024. We Refuse, We Want, We Commit: Volume 1: The Manifestos for Creative
Resistance in Technology. https://book.strategictransparency.network/.

[16] Nicholas Davis, Alexander Zook, Brian O’Neill, Brandon Headrick, Mark Riedl,

Ashton Grosz, and Michael Nitsche. 2013. Creativity support for novice digital

filmmaking. In SIGCHI Conference on Human Factors in Computing Systems.
651–660. https://doi.org/10.1145/2470654.2470747

[17] Matt DesLauriers. [n. d.]. Canvas Sketch: A framework for making generative

artwork in JavaScript and the browser. https://github.com/mattdesl/canvas-

sketch.

[18] Laura Devendorf, Leah Buechley, Noura Howell, Jennifer Jacobs, Cindy Hsin-Liu

Kao, Martin Murer, Daniela Rosner, Nica Ross, Robert Soden, Jared Tso, and

Clement Zheng. 2023. Towards Mutual Benefit: Reflecting on Artist Residencies

as a Method for Collaboration in DIS. In ACM Designing Interactive Systems
Conference. 124–126. https://doi.org/10.1145/3563703.3591452

[19] Marc Downie and Paul Kaiser. 2021. Field. http://openendedgroup.com/field/.

[20] Excel Art 2024. r/Excel Art. https://www.reddit.com/r/excelart/.

[21] Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose

Biskjaer, and Peter Dalsgaard. 2019. Mapping the landscape of creativity support

tools in HCI. In SIGCHI Conference on Human Factors in Computing Systems.
1–18. https://doi.org/10.1145/3290605.3300619

[22] Terkel Gjervig. 2024. Awesome Creative Coding. https://github.com/terkelg/

awesome-creative-coding.

[23] Google. 2024. Google Summer of Code FAQ. https://developers.google.com/

open-source/gsoc/faq. Accessed: 5/24/2024.

[24] Ira Greenberg. 2007. Processing: creative coding and computational art. Apress.
[25] Ira Greenberg, Deepak Kumar, and Dianna Xu. 2012. Creative Coding and Visual

Portfolios for CS1. In ACM Technical Symposium on Computer Science Education.
247–252. https://doi.org/10.1145/2157136.2157214

[26] Philip Guo. 2021. Ten million users and ten years later: Python tutor’s design

guidelines for building scalable and sustainable research software in academia.

In The 34th Annual ACM Symposium on User Interface Software and Technology.
1235–1251. https://doi.org/10.1145/3472749.3474819

[27] MarkGuzdial. 2003. AMedia Computation Course for Non-Majors. InConference
on Innovation and Technology in Computer Science Education. https://doi.org/10.

1145/961511.961542

[28] Mark Guzdial. 2013. Exploring Hypotheses about Media Computation. In ACM
Conference on International Computing Education Research. https://doi.org/10.

1145/2493394.2493397

[29] Mark Guzdial and Andrea Forte. 2005. Design Process for a Non-Majors

Computing Course. In Technical Symposium on Computer Science Education.
https://doi.org/10.1145/1047344.1047468

[30] Lars Hallnäs and Johan Redström. 2001. Slow technology–designing for

reflection. Personal and ubiquitous computing 5 (2001), 201–212. https:

//doi.org/10.1007/PL00000019

[31] Stig Møller Hansen. 2019. Mapping creative coding courses: Toward bespoke

programming curricula in graphic design education. In Conference of the Euro-
pean Association for Computer Graphics. The Eurographics Association, 17–20.
https://doi.org/10.2312/eged.20191024

[32] Baku Hashimoto. 2021. Glisp: lisp-based graphic design tool. In SIGGRAPH Asia
2021 Real-Time Live! 1–1. https://doi.org/10.1145/3478511.3491312

[33] Lingdong Huang. 2019. wenyan. https://github.com/wenyan-lang/wenyan.

[34] Jessica Hullman, Eytan Adar, and Priti Shah. 2011. Benefitting infovis with

visual difficulties. IEEE Transactions on Visualization and Computer Graphics 17,
12 (2011), 2213–2222. https://doi.org/10.1109/TVCG.2011.175

[35] hundredrabbits. 2021. Orca. https://github.com/hundredrabbits/Orca.

[36] Sarah Inman and David Ribes. 2019. “Beautiful Seams” Strategic Revelations and

Concealments. In SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1–14. https://doi.org/10.1145/3290605.3300508

[37] Jon Ippolito. 2023. AI versus old-school creativity: a 50-student, semester-

long showdown. Still Water. https://blog.still-water.net/ai-versus-old-school-

creativity/.

[38] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Ex-

tending Manual Drawing Practices with Artist-Centric Programming Tools. In

SIGCHI Conference on Human Factors in Computing Systems. https://doi.org/10.

1145/3173574.3174164

[39] Harry H Jiang, Lauren Brown, Jessica Cheng, Mehtab Khan, Abhishek Gupta,

Deja Workman, Alex Hanna, Johnathan Flowers, and Timnit Gebru. 2023. AI

Art and its Impact on Artists. In AAAI/ACM Conference on AI, Ethics, and Society.
363–374. https://doi.org/10.1145/3600211.3604681

[40] Martin Jonsson and Jakob Tholander. 2022. Cracking the code: Co-coding with

AI in creative programming education. In Conference on Creativity and Cognition.
5–14. https://doi.org/10.1145/3527927.3532801

[41] Majeed Kazemitabaar, Runlong Ye, XiaoningWang, Austin ZHenley, Paul Denny,

Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a Classroom

Deployment of an LLM-based Programming Assistant that Balances Student

and Educator Needs. (2024). https://doi.org/10.1145/3613904.3642773

[42] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to pro-

gramming: A taxonomy of programming environments and languages for

novice programmers. ACM computing surveys 37, 2 (2005), 83–137. https:

//doi.org/10.1145/1089733.1089734

https://chi2024.acm.org/2024/02/08/artifacts-at-chi-2024/
https://chi2024.acm.org/2024/02/08/artifacts-at-chi-2024/
https://www.adobe.com/creativecloud/plans.html
https://www.adobe.com/creativecloud/plans.html
https://doi.org/10.1145/3544548.3581168
https://doi.org/10.1145/3544548.3581168
https://doi.org/10.1145/3586183.3606719
https://doi.org/10.1145/3468505
https://www.reddit.com/r/processing/comments/1708ikb/ben_fry_resigns_from_the_processing_foundation/
https://www.reddit.com/r/processing/comments/1708ikb/ben_fry_resigns_from_the_processing_foundation/
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/3334480.3382994
https://doi.org/10.1145/3544548.3580777
https://doi.org/10.1145/3632620.3671095
https://doi.org/10.1145/3461778.3462050
https://doi.org/10.1145/3461778.3462050
https://web.archive.org/web/20230331113047/http://www.maxuino.org/
https://web.archive.org/web/20230331113047/http://www.maxuino.org/
https://www.escholarship.org/uc/item/4kg8g9gd
https://www.escholarship.org/uc/item/4kg8g9gd
https://doi.org/10.1007/978-3-319-27036-4_14
https://book.strategictransparency.network/
https://doi.org/10.1145/2470654.2470747
https://github.com/mattdesl/canvas-sketch
https://github.com/mattdesl/canvas-sketch
https://doi.org/10.1145/3563703.3591452
http://openendedgroup.com/field/
https://www.reddit.com/r/excelart/
https://doi.org/10.1145/3290605.3300619
https://github.com/terkelg/awesome-creative-coding
https://github.com/terkelg/awesome-creative-coding
https://developers.google.com/open-source/gsoc/faq
https://developers.google.com/open-source/gsoc/faq
https://doi.org/10.1145/2157136.2157214
https://doi.org/10.1145/3472749.3474819
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/961511.961542
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/1047344.1047468
https://doi.org/10.1007/PL00000019
https://doi.org/10.1007/PL00000019
https://doi.org/10.2312/eged.20191024
https://doi.org/10.1145/3478511.3491312
https://github.com/wenyan-lang/wenyan
https://doi.org/10.1109/TVCG.2011.175
https://github.com/hundredrabbits/Orca
https://doi.org/10.1145/3290605.3300508
https://blog.still-water.net/ai-versus-old-school-creativity/
https://blog.still-water.net/ai-versus-old-school-creativity/
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/3600211.3604681
https://doi.org/10.1145/3527927.3532801
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734


Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

[43] Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.

In IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE,
25–29. https://doi.org/10.1109/VLHCC.2017.8103446

[44] Robert J Kloss. 1994. A nudge is best: Helping students through the Perry

scheme of intellectual development. College Teaching 42, 4 (1994), 151–158.

[45] Steve Krug. 2013. Don’t make me think, revisited (3 ed.). New Riders Publishing,

Upper Saddle River, NJ.

[46] Google Labs. 2024. Shiffbot. https://shiffbot.withgoogle.com/.

[47] Sam Lau and Philip Guo. 2023. From “Ban it till we understand it” to “Re-

sistance is futile”: How university programming instructors plan to adapt as

more students use AI code generation and explanation tools such as ChatGPT

and GitHub Copilot. In ACM Conference on International Computing Education
Research. 106–121. https://doi.org/10.1145/3568813.3600138

[48] Sam Lavigne and Tega Brain. 2019. p5.Riso. https://antiboredom.github.io/p5.

riso/.

[49] Golan Levin and Tega Brain. 2021. Code as Creative Medium: A Handbook for
Computational Art and Design. MIT.

[50] Jingyi Li, Joel Brandt, Radomír Mech, Maneesh Agrawala, and Jennifer Jacobs.

2020. Supporting visual artists in programming through direct inspection

and control of program execution. In SIGCHI Conference on Human Factors in
Computing Systems. 1–12. https://doi.org/10.1145/3313831.3376765

[51] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From

Visual Artists About Software Development. In SIGCHI Conference on Human
Factors in Computing Systems. https://doi.org/10.1145/3411764.3445682

[52] Jingyi Li, Eric Rawn, Jacob Ritchie, Jasper Tran O’Leary, and Sean Follmer. 2023.

Beyond the Artifact: Power as a Lens for Creativity Support Tools. In ACM
Symposium on User Interface Software and Technology. 1–15. https://doi.org/10.

1145/3586183.3606831

[53] Alan Lundgard, Crystal Lee, and Arvind Satyanarayan. 2019. Sociotechnical

considerations for accessible visualization design. In Visualization Conference.
IEEE, 16–20. https://doi.org/10.1109/VISUAL.2019.8933762

[54] John Maeda. 2004. Creative Code: Aesthetics + Computation. Thames & Hudson.

[55] Mihaela Malita and Ethel Schuster. 2020. From Drawing to Coding: Teaching

Programming with Processing. Journal of Computing Sciences in Colleges 35, 8
(April 2020), 245–246. https://doi.org/10.1145/3544548.3580683

[56] Aymeric Mansoux, Brendan Howell, Dušan Barok, and Ville-Matias

Heikkilä. 2023. Permacomputing Aesthetics: Potential and Limits of

Constraints in Computational Art, Design and Culture. In Ninth Com-
puting within Limits. LIMITS. https://doi.org/10.21428/bf6fb269.6690fc2e

https://limits.pubpub.org/pub/6loh1eqi.

[57] Lauren Lee McCarthy, Thomas Hughes, and Golan Levin. 2021. Open Source
Software Toolkits for the Arts (OSSTA): a Convening. Technical Report. The

Frank-Ratchye STUDIO for Creative Inquiry, Carnegie Mellon University.

https://github.com/CreativeInquiry/OSSTA-Report.

[58] Bruce M McLaren, Krista E DeLeeuw, and Richard E Mayer. 2011. Polite web-

based intelligent tutors: Can they improve learning in classrooms? Computers &
Education 56, 3 (2011), 574–584. https://doi.org/10.1016/j.compedu.2010.09.019

[59] Alex McLean. [n. d.]. Tidal Cycles. https://tidalcycles.org/.

[60] Andrew M McNutt, Anton Outkine, and Ravi Chugh. 2023. A Study of Editor

Features in a Creative Coding Classroom. In CHI Conference on Human Factors
in Computing Systems. 1–15. https://doi.org/10.1145/3544548.3580683

[61] Mark C Mitchell and Oliver Bown. 2013. Towards a creativity support tool in

processing: understanding the needs of creative coders. In Australian Computer-
Human Interaction Conference: Augmentation, Application, Innovation, Collabo-
ration. 143–146. https://doi.org/10.1145/2541016.2541096

[62] Taru Muhonen and Raphaël de Courville. 2023. Creation technology

database. https://available-anaconda-10d.notion.site/Creation-technology-

database-053027df02ec49e8b3183571d3fcafca.

[63] netizen. 2022. netizen. https://netizen.org/netnet/.

[64] openFrameworks 2021. openFrameworks. https://openframeworks.cc/.

[65] OpenProcessing. [n. d.]. OpenProcessing. https://www.openprocessing.org/.

[66] p5 2021. p5.js. https://p5js.org/. Accessed 9/21/21.

[67] p5editor [n. d.]. p5.js editor. https://github.com/processing/p5.js-web-editor.

[68] p5.js editor developers. [n. d.]. Contributing to the p5.js Web Edi-

tor. https://github.com/processing/p5.js-web-editor/blob/develop/.github/

CONTRIBUTING.md.

[69] pagespeed-pro. 2024. css-art.com. https://github.com/pagespeed-pro/css-art.

com.

[70] Allison Parrish. 2016. pytracery. https://github.com/aparrish/pytracery.

[71] William Christopher Payne, Yoav Bergner, Mary Etta West, Carlie Charp,

R Benjamin Benjamin Shapiro, Danielle Albers Szafir, Edd V Taylor, and

Kayla DesPortes. 2021. Danceon: Culturally responsive creative computing.

In SIGCHI conference on human factors in computing systems. 1–16. https:

//doi.org/10.1145/3411764.3445149

[72] WilliamChristopher Payne, Xinran Shen, Eric Xu,MatthewKaney,Maya Graves,

Matthew Herrera, Madeline Mau, Diana Murray, Vinnie Wang, and Amy Hurst.

2023. Approaches to Making Live Code Accessible in a Mixed-Vision Music

Ensemble. In ACM SIGACCESS Conference on Computers and Accessibility. 1–5.
https://doi.org/10.1145/3597638.3614489

[73] Kylie Peppler and Yasmin Kafai. 2009. Creative Coding: Programming for Per-

sonal Expression. International Conference on Computer Supported Collaborative
Learning 30 (2009), 7.

[74] Polygon. 2019. Art Sqool took me back to real-life art school. https://www.

polygon.com/2019/3/1/18246354/art-sqool-impressions-pc-mac.

[75] Venkatesh Potluri, Sudheesh Singanamalla, Nussara Tieanklin, and Jennifer

Mankoff. 2023. Notably Inaccessible—Data Driven Understanding of Data Sci-

ence Notebook (In) Accessibility. In ACM SIGACCESS Conference on Computers
and Accessibility. 1–19. https://doi.org/10.1145/3597638.3608417

[76] Processing. [n. d.]. p5.sound.js. https://github.com/processing/p5.sound.js.

[77] Miller Puckette. [n. d.]. Pure Data. https://puredata.info/.

[78] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other

difficulties in introductory programming: A literature review. ACM Transactions
on Computing Education 18, 1 (2017), 1–24. https://doi.org/10.1145/3077618

[79] Eric Rawn, Jingyi Li, Eric Paulos, and Sarah E Chasins. 2023. Understanding

Version Control as Material Interaction with Quickpose. In SIGCHI Conference
on Human Factors in Computing Systems. 1–18. https://doi.org/10.1145/3544548.

3581394

[80] Casey Reas and Ben Fry. 2007. Processing: a programming handbook for visual
designers and artists. Mit Press. https://doi.org/oclc/73993935

[81] Horst W Rittel and Melvin M Webber. 1974. Wicked problems. Man-made
Futures 26, 1 (1974), 272–280.

[82] ruffle. 2024. Ruffle - Flash Emulator. https://ruffle.rs/.

[83] Adrian Salguero, Julian McAuley, Beth Simon, and Leo Porter. 2020. A Longitudi-

nal Evaluation of a Best Practices CS1. In Conference on International Computing
Education Research. https://doi.org/10.1145/3372782.3406274

[84] Vincent Scheib, Theo Engell-Nielsen, Saku Lehtinen, Eric Haines, and Phil

Taylor. 2002. The demo scene. In ACM SIGGRAPH 2002 conference abstracts and
applications. 96–97. https://doi.org/10.1145/1242073.1242125

[85] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live

Coding: A Review of the Literature. In Conference on Innovation and Technology
in Computer Science Education. https://doi.org/10.1145/3430665.3456382

[86] David Williamson Shaffer and Mitchel Resnick. 1999. “Thick” Authenticity:

New Media and Authentic Learning. Journal of Interactive Learning Research 10,

2 (December 1999), 195–215.

[87] Natalie Sherman. 2024. Software giant Adobe accused of ’trapping customers’.

https://www.bbc.com/news/articles/c98825z8330o. BBC News (June 2024).
[88] Daniel Shiffman. 2024. The Coding Train. https://www.youtube.com/user/

shiffman.

[89] Daniel Shiffman. 2024. The Nature of Code. No Starch Press.

[90] Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and

innovation. Commun. ACM 50, 12 (2007), 20–32. https://doi.org/10.1145/1323688.

1323689

[91] Beth Simon, Päivi Kinnunen, Leo Porter, and Dov Zazkis. 2010. Experience

Report: CS1 for Majors with Media Computation. In Conference on Innovation
and Technology in Computer Science Education. https://doi.org/10.1145/2445196.

2445214

[92] Eric Snodgrass and Winnie Soon. 2019. API practices and paradigms: Exploring

the protocological parameters of APIs as key facilitators of sociotechnical forms

of exchange. First Monday 24, 2 (2019). https://doi.org/10.5210/fm.v24i2.9553

[93] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. 2022. Towards Creative

Version Control. Proceedings of the ACM on Human-Computer Interaction 6,

CSCW2 (2022), 1–25. https://doi.org/10.1145/3555756

[94] Blair Subbaraman and Nadya Peek. 2022. P5.Fab: Direct control of digital

fabrication machines from a creative coding environment. In ACM Designing
Interactive Systems Conference. 1148–1161. https://doi.org/10.1145/3532106.

3533496

[95] Blair Subbaraman, Shenna Shim, and Nadya Peek. 2023. Forking a Sketch: How

the OpenProcessing Community Uses Remixing to Collect, Annotate, Tune,

and Extend Creative Code. In ACM Designing Interactive Systems Conference.
326–342. https://doi.org/10.1145/3563657.3595969

[96] Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.

InWorkshop on Live Programming, LIVE. IEEE, 31–34. https://doi.org/10.1109/

LIVE.2013.6617346

[97] Teresa Terroso and Mário Pinto. 2022. Programming for Non-Programmers: An

Approach Using Creative Coding in Higher Education. In International Computer
Programming Education Conference (Open Access Series in Informatics, Vol. 102).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 13:1–

13:8. https://doi.org/10.4230/OASIcs.ICPEC.2022.13

[98] Tiffany Tseng, Ruijia Cheng, and Jeffrey Nichols. 2024. Keyframer: Empowering

Animation Design using Large LanguageModels. arXiv preprint arXiv:2402.06071
(2024). https://doi.org/10.48550/arXiv.2402.06071

https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/3568813.3600138
https://antiboredom.github.io/p5.riso/
https://antiboredom.github.io/p5.riso/
https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/3586183.3606831
https://doi.org/10.1145/3586183.3606831
https://doi.org/10.1109/VISUAL.2019.8933762
https://doi.org/10.1145/3544548.3580683
https://doi.org/10.21428/bf6fb269.6690fc2e
https://doi.org/10.1016/j.compedu.2010.09.019
https://tidalcycles.org/
https://doi.org/10.1145/3544548.3580683
https://doi.org/10.1145/2541016.2541096
https://available-anaconda-10d.notion.site/Creation-technology-database-053027df02ec49e8b3183571d3fcafca
https://available-anaconda-10d.notion.site/Creation-technology-database-053027df02ec49e8b3183571d3fcafca
https://netizen.org/netnet/
https://openframeworks.cc/
https://www.openprocessing.org/
https://p5js.org/
https://github.com/processing/p5.js-web-editor
https://github.com/processing/p5.js-web-editor/blob/develop/.github/CONTRIBUTING.md
https://github.com/processing/p5.js-web-editor/blob/develop/.github/CONTRIBUTING.md
https://github.com/pagespeed-pro/css-art.com
https://github.com/pagespeed-pro/css-art.com
https://github.com/aparrish/pytracery
https://doi.org/10.1145/3411764.3445149
https://doi.org/10.1145/3411764.3445149
https://doi.org/10.1145/3597638.3614489
https://www.polygon.com/2019/3/1/18246354/art-sqool-impressions-pc-mac
https://www.polygon.com/2019/3/1/18246354/art-sqool-impressions-pc-mac
https://doi.org/10.1145/3597638.3608417
https://github.com/processing/p5.sound.js
https://puredata.info/
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3544548.3581394
https://doi.org/10.1145/3544548.3581394
https://doi.org/oclc/73993935
https://doi.org/10.1145/3372782.3406274
https://doi.org/10.1145/1242073.1242125
https://doi.org/10.1145/3430665.3456382
https://www.youtube.com/user/shiffman
https://www.youtube.com/user/shiffman
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/2445196.2445214
https://doi.org/10.1145/2445196.2445214
https://doi.org/10.5210/fm.v24i2.9553
https://doi.org/10.1145/3555756
https://doi.org/10.1145/3532106.3533496
https://doi.org/10.1145/3532106.3533496
https://doi.org/10.1145/3563657.3595969
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.4230/OASIcs.ICPEC.2022.13
https://doi.org/10.48550/arXiv.2402.06071


CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

[99] Roopa Vasudevan. 2023. High-Level Creativity: New Media Art and the Pri-

orities of the Tech Industry. (2023). Digital Democracies Institute Summer

Speaker Series, https://digitaldemocracies.org/dr-roopa-vasudevan-high-level-

creativity-new-media-art/.

[100] Mauricio Verano Merino and Juan Pablo Sáenz. 2023. The Art of Creating

Code-Based Artworks. In SIGCHI Conference on Human Factors in Computing
Systems Extended Abstracts. 1–7. https://doi.org/10.1145/3544549.3585743

[101] Lasse Steenbock Vestergaard, João Fernandes, and Mirko Presser. 2017. Creative

coding within the Internet of Things. In Global Internet of Things Summit. IEEE,
1–6. https://doi.org/10.1109/GIOTS.2017.8016223

[102] Jessica Vitak. 2024. Reviewer Critiques (Qualitative Methods) and How

to Respond to Them. https://web.archive.org/web/20240524105030/

https://docs.google.com/document/d/1jHiWJdkjm6Go683GIxi0tz8l-

17rQQpadn9qb7zZDh4/edit#heading=h.e86h69sdez6d.

[103] AnqiWang, Zhizhuo Yin, Yulu Hu, YuanyuanMao, and Pan Hui. 2024. Exploring

the Potential of Large Language Models in Artistic Creation: Collaboration and

Reflection on Creative Programming. arXiv preprint arXiv:2402.09750 (2024).

https://doi.org/10.48550/arXiv.2402.09750

[104] David Weintrop and Uri Wilensky. 2015. To Block or Not to Block, That is the

Question: Students’ Perceptions of Blocks-Based Programming. In International
Conference on Interaction Design and Children. https://doi.org/10.1145/2771839.

2771860

[105] Timothy J Weston, Elaine Seymour, Andrew K Koch, and Brent M Drake. 2019.

Weed-out classes and their consequences. Talking about leaving revisited: Per-
sistence, relocation, and loss in undergraduate STEM education (2019), 197–243.

https://doi.org/10.1007/978-3-030-25304-2_7

[106] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2018. Design exposition with

literate visualization. IEEE transactions on visualization and computer graphics
25, 1 (2018), 759–768. https://doi.org/10.1109/TVCG.2018.2864836

[107] Zoe J Wood, Paul Muhl, and Katelyn Hicks. 2016. Computational Art: Introduc-

ing High School Students to Computing via Art. InACM Technical Symposium on
Computing Science Education. 261–266. https://doi.org/10.1145/2839509.2844614

[108] Junran Yang, AndrewMMcNutt, and Leilani Battle. 2024. Considering Visualiza-

tion Example Galleries. In Symposium on Visual Languages and Human-Centric
Computing. IEEE, 329–343. https://doi.org/10.1109/VL/HCC60511.2024.00043

https://digitaldemocracies.org/dr-roopa-vasudevan-high-level-creativity-new-media-art/
https://digitaldemocracies.org/dr-roopa-vasudevan-high-level-creativity-new-media-art/
https://doi.org/10.1145/3544549.3585743
https://doi.org/10.1109/GIOTS.2017.8016223
https://web.archive.org/web/20240524105030/https://docs.google.com/document/d/1jHiWJdkjm6Go683GIxi0tz8l-17rQQpadn9qb7zZDh4/edit#heading=h.e86h69sdez6d
https://web.archive.org/web/20240524105030/https://docs.google.com/document/d/1jHiWJdkjm6Go683GIxi0tz8l-17rQQpadn9qb7zZDh4/edit#heading=h.e86h69sdez6d
https://web.archive.org/web/20240524105030/https://docs.google.com/document/d/1jHiWJdkjm6Go683GIxi0tz8l-17rQQpadn9qb7zZDh4/edit#heading=h.e86h69sdez6d
https://doi.org/10.48550/arXiv.2402.09750
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1007/978-3-030-25304-2_7
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1145/2839509.2844614
https://doi.org/10.1109/VL/HCC60511.2024.00043


Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

A Appendix

In this appendix, we include several additional materials. First, Sec. A.1 contains the interview guide for our semi-structured interviews.

Second, Sec. A.2 contains our post-interview survey instrument. Lastly, Sec. A.3 summarizes the code book from our analysis of the interviews.

A.1 Semi-Structured Interview Guide

Thank you for agreeing to participate in this interview. My name is Andrew McNutt. Today we will spend around 60 minutes talking about

your experiences with, and opinions about, several topics related to creative coding. Tomorrow, I’ll send you a brief exit survey, which

should take a handful of minutes, and will give you a place to tell us where to send your interview compensation.

Do you have any questions for us before we start recording the interview?

Okay, let’s begin! We’ll start recording now. <START RECORDING>

Let’s start with several Introductory Questions.

(1) Do you think of yourself as an artist? A teacher? A programming tool builder? How do those roles manifest themselves for you?

(2) Next I have a few quick questions about your experience teaching. Have you taught creative coding? This could be in a classroom

setting, or in a workshop, or by writing or recording tutorials, or something else. (If not, skip to Question 6. And ask questions in a

way that reflects that background having not taught.)

(a) What are the goals of your teaching (in teaching creative coding)?

(b) What types of things do people make in this course? Visual art?

(c) What does “good” creative code look like? Does that mean beautiful code? Beautiful output? Both?

(d) What types of students enroll in the course?

(3) Do you grade or give feedback on student work?

(a) How does grading work? (What are you looking to grade? Eg code correctness/ artistic ness etc)

(b) Are you satisfied with how grading works? How do you wish it was different?

(4) What is the role of community in your classroom? How do students help each other on course work?

(5) What are some challenges you see students encounter in the classroom? What obstacles stand in the way of successful outcomes we

talked about earlier?

(a) Does a student’s background (for example, being interested primarily in art and design rather than computer science) impact the

type of challenges that they face? Are there specific topics or projects students with different backgrounds tend to struggle with?

(b) Do you think any particular technological interventions might help with those challenges?

This brings us to our next section. We’ve talked about several aspects of your experience teaching creative coding. Next, let’s talk more

about the Technical Details of those experiences.

(6) What technologies—including programming languages, libraries, tools, and editors—have you used to teach? AND What have you

liked and disliked about those tools?

(a) What motivated you to choose these technologies and tools?

(b) Are the tools you use to create course material different from those that students use to complete course work? Do you wish that

was different?

(7) Have you customized any of these technologies — languages, libraries, editors, or other tools? Or have you made your own?

(a) What motivated you to make custom tools? What did you do?

(b) What types of tasks did you seek to improve via these custom tools? For instance, expressivity, learning goals, reducing syntactic

errors.

(c) Do you think of your system(s) as primarily a teaching system or an art making system?

(8) How does automated guidance work in your classroom / your tools? Like, how are students able to get help with your tools? Was

their documentation or? Are you familiar with linters or auto-formatters? Do you think they have value in this environment? One

reason I bring it up is because in our own courses we found that linters were often well liked and viewed as helpful. How well does

that align with your experience?

(9) Are there other sorts of editor features (or tools) that you wish existed that would help you teach creative coding?



CHI ’25, April 26-May 1, 2025, Yokohama, Japan McNutt et al.

(10) What creative coding classroom tasks are currently hard or impossible? Like, in the absence of constraints (such as from technological,

temporal, curricular, or financial sources) what would you change about your creative coding course?

Alright us to our next section, where we’ll spend some time thinking about Particular Code Editing Features.

(11) In your teaching, do you do live coding? What does that process look like? What tools do you use?

(12) What is the role of liveness in your systems? Do any of the tools you use have auto-refresh or anything like that?

(13) What is your perspective on the role of AI-based tools in a creative coding classroom? For instance, tools like GitHub CoPilot or

ChatGPT, which can generate code snippets? In an ideal world, what types of things could a digital assistant help with in a code

editor for creative coding?

(14) What do you think about the role of pedagogical software in classroom settings versus so-called “real” software engineering tools?

More provocatively: is it appropriate to teach classes using tools that are pedagogically valuable, but that the student will never use

again?

(15) We sometimes saw students shying away from more advanced tools that they perceive as impeding their learning because they make

things too easy. Other students perceived a difference between an “art tool” versus a “making art with code tool”. What do you think

about this tension between more feature-rich creative coding environments and their potential effects for students?

We’ve been talking for a while, so we’ll start to wrap up with a few Closing Questions.

(16) We talked a lot about creative coding. Let’s pop up a level. Can you reflect on what the term itself, “creative coding,” means to you?

(a) Is creative coding a way to make art with code, or is it a way to learn coding via art?

(b) How do you know when some creative coding work is finished?

(17) Is there anyone you think I should ask about these topics?

(18) Do you have any other comments, or anything else you’d like us to know?

That was all really helpful. Thank you so much for sharing your time and thoughts with us! Now we’ll stop the recording and talk about

how to fill out the brief post-interview survey.

A.2 Post-Interview Survey

Thanks for completing our interview! We just have a few other questions for you.

(1) Do you consider yourself... Matrix multiple choice

(a) An Artist: ◦ Strongly Agree, ◦ Agree, ◦ Neutral, ◦ Disagree, ◦ Strongly Disagree

(b) A Teacher: ◦ Strongly Agree, ◦ Agree, ◦ Neutral, ◦ Disagree, ◦ Strongly Disagree

(c) A Tool Builder: ◦ Strongly Agree, ◦ Agree, ◦ Neutral, ◦ Disagree, ◦ Strongly Disagree

(2) Is there any other label (besides the ones listed above) that you most identify with? Sentence response

(3) Is there anything that you’ve made that you would like to show us? This might be a tool you’ve made, materials you’ve used to teach

creative coding, a programmatic environment you’ve used, or something else entirely. Please include links if possible (feel free to use

multiple lines). Paragraph response

(4) How long have you been teaching? Multiple choice: ◦ 0-1 Years, ◦ 1-3 Years, ◦ 3-6 Years, ◦ 6-10 Years, ◦ More than 10 Years

(5) What is the highest academic degree you have attained (or are pursuing)? What field is it in? Sentence response

(6) What pronouns should we use to refer to you in analysis of these interviews? Multiple choice: ◦ She / hers, ◦ He / his, ◦ They /

them, ◦ Other..., ◦ Add option

(7) When quoting any of your responses in our analysis, do you prefer to be quoted anonymously? Or would you like quotations of your

responses to be attributed by name?Multiple choice: ◦ Refer to me anonymously, ◦ Refer to me by name if possible

(8) Is it alright if we contact you with follow up questions, should they arise? Multiple choice: ◦ Yes, ◦ no
(9) Is there anything else you’d like us to know that you didn’t get a chance to talk about during the interview? Paragraph response

(10) Is there anyone else you think we should talk to? Paragraph response

(11) (for record keeping) What is your name? Sentence response

(12) What email address should we send your gift certificate to? Sentence response



Slowness, Politics, and Joy CHI ’25, April 26-May 1, 2025, Yokohama, Japan

A.3 Code Book: Analysis of Interviews

Code Explanation (e.g. Relating to X )

slowness

Art/Craft The difference between art and craft, particularly in the context of learning each of the components

Authenticity The perception of tools being "realistic" or "practical"

Constraints Impositions on students to cause them to produce art in a useful or different manner

Directorial Agency Expressing an idea without needing to go through the craft of making it, analogous to declarative programming

Friction Tedious or difficult processes

Live Coding Liveness (per Tanimoto [96]) or live coding

Process Demonstrating, conveying, or teaching activities involving processes. Like "getting hands in clay" to teach pottery

Reflection Reflection, pausing, or considering the context, content, or scope of work being pursued

Slowness Activities or processes that involve taking more time in order to benefit various situations or pursuits

politics

Bit Rot The tendency for digital objects to become broken over time

Documentation Documentation of software

Evaluation Grading or feedback

Physical Computing Creative coding applications and contexts that involve hardware, such as microcontrollers or Arduinos

Politics Issues around power, relationships between individuals, corporations, or institutions

joy

Inclusion Being part of a community, or being included or welcomed

Joy Enjoyment, play, delight, or otherwise ludic experience

Process (also in slowness; see above)

Topic: Accessibility

Accessibility Accessibility broadly defined, such as physical disability, or being left out through choices that alienate a culture

Topic: AI

AI Concerns Commentary or concerns about systems generally referred to as AI, such as LLMs, text2images generators, etc.

Mediocrity Things that are boring, uninteresting, or middling, particularly the production of work with such qualities

N/A

Alternate Pedagogy Different ways in which the classroom might be reorganized to better fit different educational goals

Browser The browser, such as being a platform for tools

Feature Ideation Ideas or suggestions on how things could be different without a themed alternate reason for that suggestion

JS Difficulty Difficulties or issues with JavaScript

Meaning of Creative Coding Definitions and meanings of the term creative coding

Role of Teacher The structure and function of pedagogy

Software Ecosystem Environment of tools available and how they relate to one another

Tool Pedagogy Means by which tools can achieve pedagogical goals

Two Kinds of Student Frequent occurrence in creative coding classrooms: students who are good either at programming or art, but not both

Figure 4: The final code book from our analysis of the interview transcripts. Each code is presented with the eventual theme
that it is connected with. A number of codes were identified as being redundant with prior work, particularly those related to
pedagogical topics (such as “Two Kinds of Student” being well captured by Levin and Brain [49]), and are thus omitted from
our chosen themes. In addition to our main themes, we also highlight those codes that led to consideration of specific topics,
such as AI and accessibility.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Creativity, Coding, and Creative Coding
	2.2 Creative Coding in Practice
	2.3 Creative Coding in the Classroom

	3 Interview Study
	3.1 Interview Methodology
	3.2 Demographics and Backgrounds
	3.3 Analysis Methodology
	3.4 Limitations
	3.5 Positionality

	4 Technological Setting
	5 Themes
	5.1 Slowness: On Interface Speed
	5.2 Politics: Considering Power 
	5.3 Joy: Embracing Play and Process

	6 Tool Design Considerations
	6.1 Accessibility
	6.2 AI

	7 Discussion
	Acknowledgments
	References
	A Appendix
	A.1 Semi-Structured Interview Guide
	A.2 Post-Interview Survey
	A.3 Code Book: Analysis of Interviews


