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Abstract

In this thesis we study a modern formalism known as Nonequivalent Lagrangian
Mechanics, that is constructed on top of the traditional Lagrangian theory of mechanics.
By making use of the non-uniqueness of the Lagrangian representation of dynamical
systems, we are able to generate conservation laws in a way that is novel and, in
many cases much faster than the traditional Noetherian analysis. In every case that
we examine, these invariants turn out to be Noetherian invariants in disguise. We
apply this theory to a wide variety of systems including predator-prey dynamics and
damped driven harmonic motion.





Introduction

The overall project of classical mechanics is to predict the future motions and behaviors

of classical systems. Given a particular object with a known set of forces acting on it,

as well as appropriate information about the initial position and velocity, we want to

predict its position at all later times. Over the last several centuries a large number

of methods have been developed to approach this problem.

These expressions come in two flavors, the description of a quantity as it changes

across time, often called a trajectory, and the description of a quantity that does

not change across time, called a conservation law or an invariant. Each of them give

insight into the actual processes involved in the system at hand. In many cases the

full knowledge of each of these expressions amounts to a complete description of a

system, up to selection of initial conditions.1

MK
t0 t1 t2 t3 t4

a

Figure 1: Diagram of the time evolution of a simple harmonic oscillator, with equilib-
rium length a, spring constant K and mass M.

Consider one of the most basic systems in physics, the simple harmonic oscillator,

as depicted in Figure 1. The only force on the mass is given by the usual Hooke’s

Law restorative force, F = Ma = −Kx, which can be rearranged into a differential

equation given by

ẍ = −K
M
x = −ω2

0x ,

where ω0 is the natural frequency of the oscillator. The solution to this equation,

which is given by

x(t) = A cos(ω0t) +B sin(ω0t) ,

describes the position of the mass across time, where A and B are fixed by the initial

1Systems that do not contain enough invariants to be completely described are known as non-
integrable systems.
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conditions. The velocity is simply the time-derivative of this expression, and is given

by

v(t) = −Aω0 sin(ω0t) +Bω0 cos(ω0t) .

As time passes in the system, velocity and position engage in a tug of war, such that

the total mechanical energy of the system

E =
1

2
Mv2 +

1

2
Kx2 ,

remains a constant. As can be seen in Figure 2, when the mass gets farther away from

the equilibrium the velocity becomes small, while when it is close to the equilibrium

the position becomes small and so to compensate the velocity becomes large. There

are a great variety of types of conservation laws including conservation of energy,

momentum, angular momentum, spin, charge.

t

x(t)

E

v(t)

Figure 2: Diagram of the relative behavior of the position, velocity and energy for the
simple harmonic oscillator over time.

The modern explanation of why these quantities remain invariant across time is

due to Noether’s theorem, which says that if a system exhibits a symmetry of a certain

type then there exists a corresponding conservation law. In order to fully understand

this theorem we must first develop a mature notion of symmetry. While we may be

familiar with symmetry in everyday life, be it from art, nature or otherwise, the formal

meaning of the concept in physics rests in a system’s relationship to transformations. A

system has a symmetry if it remains unchanged across a transformation. For instance,
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Figure 3: Diagrams of the rotational (left) and axial (right) symmetries of the
equilateral triangle.

an equilateral triangle will remain precisely the same under rotations of 60◦ degrees

about its center, as well as flipping about one of its central axes, as in Figure 3. One

would say that the equilateral triangle has rotational and axial or mirror symmetry.

This is a particular example of the type of symmetry known as discrete symmetry,

because each of these transformations is the smallest one that will yield a valid

symmetry and yet it is bigger than infinitely small. If we were to rotate the triangle

by 1◦, or any angle other than a multiple of 60◦, then it would appear different than

the original.

Conversely, imagine a system that when rotated an infinitesimal amount stays the

same. This is true of the circle, as in Figure 4. This type of transformation represents

a continuous symmetry, because there is a continuous family of rotations that will

leave the circle the same.

rotate

Figure 4: Diagram of a circle under rotational transformation.

Both continuous and discrete symmetries exist in physical systems, but they are

often harder to visualize. For instance, consider our simple harmonic oscillator system.

If one were to let the system evolve in time, it would still behave in the same oscillatory

manner. For all times future and past, the system continues to behave in its original

fashion. By Noether’s theorem, this symmetry across time shows that the system has

conservation of mechanical energy, just as we noted above.
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Let’s take a step back in order to describe the historical relationship between

mechanics and Noether’s theorem. Each stage of development in the field of classical

mechanics necessitated a new development in formal mathematics. Calculus was

created in order to describe the ideas of what is now known as Newtonian Mechanics,

which took the view that the universe could be understood as the aggregation of

endless cause and effect relationships, between objects and forces acting on them.

As mathematics and physics developed across the 18th century there grew a need

for greater degrees of rigor, and so analytical mechanics was born in conjunction with

the calculus of variations. These constructions manifested themselves as Lagrangian

and Hamiltonian Mechanics, which take the view that physical systems behave in a

optimal way across time, or, that nature is thrifty in its actions. These theories form

the backbone of the classical mechanics as it is still used in the modern day.

The original construction of Noether’s theorem in 1918 [24] takes place on top

of the Lagrangian formalism. By applying the theory of Lie Groups to describe

continuous symmetries mathematically, Noether was able to rigorously describe the

relationship between symmetries and conservation laws.

Similarly in this thesis we will consider a flavor of mechanics that develops a

formalism on top of Lagrangian mechanics. This theory was established by a number

of authors in the late 1970’s and early 1980’s known by a variety of names,2 including

Nonequivalent Lagrangian Mechanics.

The driving idea behind this theory is that Noether’s theorem takes too limiting a

view on the relationship between symmetries and conserved quantities. By relaxing

the requirements of her famous theorem we are able to generate conservation laws

that are difficult to acquire via traditional Noetherian analysis. While this alteration

does not seem to generate any significant new results of its own, it is able to generate

Noetherian conservation laws incredibly quickly.

In Chapter 1, we will develop the elements of Lagrangians mechanics that are the

underpinning of the machinery we will be working with and give a proof of Noether’s

theorem. Chapter 2 begins with an introduction to Nonequivalent Lagrangian Me-

chanics. We will then outline the continuous-transformation approach to this type of

mechanics as well as develop a set of related ansatz methods. Finally in Chapter 3

we will demonstrate that this flavor of mechanics gives results that are equivalent to

the Noetherian ones in the case of the damped harmonic oscillator and the damped

driven harmonic oscillator.

2For a full discussion of the multitude of voices present on this topic, see Appendix A.
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Classical Theory

In this chapter our purpose is to give a general outline of the traditional classical

mechanics involved in this thesis. We will begin by introducing the mathematical

formalism of the calculus of variations, and from that position we will be able to define

Lagrangian Mechanics. We will then introduce enough Lie group theory such that we

will be able to rigorously prove Noether’s theorem.

1.1 Lagrangian Mechanics

1.1.1 Fermat’s Principle

At the heart of nineteenth century classical mechanics is the principle that natural

systems always take the most efficient path. This notion is easy to see in the bending

of light when it passes from one material to another, as shown in Figure 1.1. The light

bending satisfies Snell’s Law of refraction, which is

n1 sin θ = n2 sin θ′ .

In this equation θ is the angle of incidence, and θ′ the angle of refraction. The values

n1 and n2 are the indices of refraction of the media, which determine the speed at

which light passes through the media. This relationship is behind the structure and

design of most geometric optical devices such as lenses and prisms.

The traditional approach taken in electrodynamics is to consider the boundary

conditions on either side of the interface. In Figure 1.1, the light has a slower speed

on the right side of the boundary, but the same frequency, in order to account for
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Medium 1

Medium 2

!

point b

point a

!'

Figure 1.1: Diagram of interface between two medium’s whose indexes of refraction
cause the described behavior.

this it must bend toward the direction of propagation. This is a cause and effect

perspective: the light behaves in one fashion until it reaches an obstruction, at which

time it modifies its behavior to account for the hindrance.

However, we can also consider this phenomena from the perspective of Fermat’s

principle, which says that light takes the path that minimizes travel time. Suppose we

know that a ray of light starts at point a and ends at point b. While the shortest

distance between these points is a straight line, it is not the path that will minimize

the travel time, because of the differing speeds of propagation in the media. A careful

analysis of what path minimizes travel time reproduces Snell’s Law [27].

By viewing the behavior of the system in total, rather than moment by moment,

we can make analytical predictions about the behavior of systems as a consequence of

optimization across time. This framework provides a fundamentally different way to

discuss mechanics than traditional Newtonian or electromagnetic analysis can provide,

while still maintaining the results from those fields.

1.1.2 The Principle of Least Action

The notion of extremization leads to Hamilton’s famous principle of least action. It

states that all physical systems will act in such a way as to extremize an object known

as the action of the system. Fermat’s principle is a particular case of Hamilton’s,

constructed by letting the action be the total travel time. We generally define the

action as

S[q(t)] =

∫ t1

t0

L(q, q̇, t)dt , (1.1)

where L is a specifically designed function called the Lagrangian. The action is not

truly a function, but a functional, which is an entity that maps functions into numbers.
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Accordingly the action assigns each trajectory q(t), from t0 to t1, a numerical value.

While the action is only dependent on the trajectory, the Lagrangian is dependent on

q(t), its derivative q̇(t), and time t. The fascinating, and somewhat magical element

of this process is that only the true physical trajectory is the one that will cause the

action to be minimized.

To extremize the action, we perturb the Lagrangian and find the conditions under

which the action integral remains the same.1 We start by assuming that our particle’s

trajectory q(t) from point a to point b is action minimizing.

point a point bq(t)

q(t)+η(t)

Figure 1.2: Diagram of action minimizing path with a variety of possible perturbations.

We then apply a small perturbation, η(t) such that the perturbation vanishes at

the end points, but has arbitrary behavior at times between, as in Figure 1.2.2 In

order to adhere to our requirement that the action remain invariant, we require that

the change in the value of S be second order in the perturbation:

∆S = S[q + η]− S[q] = O(η2) .

Plugging our modified trajectory into the action yields

S[q + η] =

∫ t1

t0

L(q + η, q̇ + η̇, t)dt ≈
∫ t1

t0

[
L(q, q̇, t) +

∂L

∂q
η +

∂L

∂q̇
η̇

]
dt , (1.2)

where we took Taylor expansions to separate the perturbative elements from the

original action. We now need to modify one of the components of ∆S, so that it is

expressible only in terms of the perturbation, and not its derivative. To do so we will

make use of integration by parts:

1This derivation closely follows the Extremization of an Action argument in [7].
2Despite the apparent randomness and jerks in our diagram the perturbation must be piecewise

smooth.[2]
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∫ t1

t0

∂L

∂q̇
η̇ dt = η

∂L

∂q̇

∣∣∣∣t1
t0

−
∫ t1

t0

d

dt

(
∂L

∂q̇

)
η dt = 0−

∫ t1

t0

d

dt

(
∂L

∂q̇

)
η dt ,

Applying this to Equation 1.2 then gives

∆S = 0 =

∫ t1

t0

[
∂L

∂q
η − d

dt

(
∂L

∂q̇

)
η

]
dt =

∫ t1

t0

η

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
dt . (1.3)

Recall that η is arbitrary along its path. In general the difference between it and the

true path is non-zero, except at the end points, so in order to make ∆S = 0 at all

points along the path for any η, we must require that the bracketed term in Equation

1.3 be zero at all points in time. This gives us the famous Euler-Lagrange equation:

d

dt

[
∂L

∂q̇

]
− ∂L

∂q
= 0 .

We can generalize our argument so that {qi(t)}Ni=1 are a set of trajectories for

multiple objects or for one object in multiple dimensions. Thus L is a function of

the set of trajectories, their velocities, and time, and in turn we obtain a set of

Euler-Lagrange equations:

d

dt

[
∂L

∂q̇i

]
− ∂L

∂qi
= 0 . (1.4)

By simply plugging a Lagrangian into Euler-Lagrange equations, we generate a set of

second-order differential equations that describe the action-minimized behavior for a

given system. Thus the work of mechanics is now in the design and manipulation of

Lagrangians.

Traditionally the Lagrangian is given as L = T −U : the difference between kinetic

and potential energies. This is a useful definition for classical mechanics because it

makes the relationship between Lagrangian and Newtonian mechanics quite clear.

We recall that kinetic energy in one dimension is typically defined T = 1
2
mẋ2, and

potential energy U = U(x), which gives us the Lagrangian:

L =
1

2
mẋ2 − U(x).
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Plugging this into the Euler Lagrange equations from Equation 1.4, we obtain

d

dt

[
2

2
mẋ

]
−
(
−∂U
∂x

)
= mẍ+

∂U

∂x
= 0 ⇒ mẍ = ma = −∂U

∂x
= F ,

which is exactly the familiar form of Newton’s second law in one dimension.

This prescription allows us to describe the behavior of a vast class of physical

systems. Further, it allows for the rapid derivation of the equations of motion in cases

that would be frustratingly unwieldy to describe with the language of Newtonian

mechanics. However, a Lagrangian defined as the difference between kinetic and

potential energy is inapplicable to many mechanical systems. For instance, this

recipe cannot accurately describe dissipative motion, or systems under the influence of

non-conservative forces, where we cannot construct an appropriate potential energy.

While the prescription L = T − U is extremely useful for the generation of

Lagrangians, it is not a rule[10]. A more apt definition of the Lagrangian is that it is

a measure of coordinate-space for second-order differential equation systems. This

new definition allows us to construct Lagrangians that follow all of the appropriate

rules and generate the correct equations of motion, but bear no relationship to the

concepts of kinetic and potential energy.
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Example: Linearly Damped Motion

Consider the reasonably familiar case of linearly damped motion, which has

equation of motion ẍ = −βẋ. This type of equation occurs naturally in systems

such as an object moving through a fluid and experiencing drag. The nontraditional

Lagrangian

L =
1

2
ẋ2eβt ,

successfully yields the correct equations of motion:

d

dt

[
∂L

∂ẋ

]
−∂L
∂x

=
d

dt

[
ẋeβt

]
−0 = ẍeβt+βẋeβt = (ẍ+βẋ)eβt = 0 ⇒ ẍ = −ẋβ .

This suggests that the Lagrangian is a mathematical object, not a physical one.

While we are able to use it in a number of ways to gain physical information about

dynamical systems, such as the trajectory of particles in the system or conservation

laws that are in action, the Lagrangian itself has no physics in it.

We take this opportunity to point out that Lagrangians are not unique. We can

easily write down a second Lagrangian that will give us linearly damped motion,

such as

L̃ = ẋ ln ẋ− βx.

We can demonstrate that this Lagrangian also yields the desired equations of

motion:

d

dt

[
∂L̃

∂ẋ

]
− ∂L̃

∂x
=

d

dt
[ln ẋ+ 1] + β =

ẍ

ẋ
+ β = 0 ⇒ ẍ = −ẋβ .

Both of our Lagrangians are valid, but don’t follow the traditional recipe for

writing Lagrangians. While there are stories one could tell oneself about the

physical meaning of these nontraditional Lagrangians, such as the interpretation

that L describes a free particle with exponentially increasing mass, it is important

to remember that they are not necessarily physically meaningful.
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1.2 Symmetry

Symmetry arises in this form of classical mechanics by way of coordinate transfor-

mations. A continuous transformation that leaves the action invariant is known as a

Noether symmetry. We wish to present a derivation of the relationship between this

type of transformation and conserved quantities.

1.2.1 Coordinate Transformations

Continuous Symmetry transformations in classical mechanics can be described in Lie

Group Theory. A Lie group is a group that acts on a smooth differentiable manifold

and describes a continuous symmetry.3 In this case the manifold we are considering is

the collection of possible trajectories that satisfies the equations of motion, defined by

α(q, q̇, t) = q̈,

and derived from an Euler-Lagrange equation. We start by considering an infinitesimal

transformation in space and time from the arbitrary variables q and t to Q and T .

We introduce functions η and τ and use them to perturb our original coordinates:

Q = q + εη(q, q̇, t) , T = t+ ετ(q, q̇, t) , (1.5)

where ε is a constant known as the group parameter, which we take to be small. We

can see that these transformations form a group, as associativity is explicitly built into

the real number system, and the inverse and identity are simply (τ → −τ, η → −η)

and (τ → 0, η → 0) respectively.

We also need to know how q̇ changes under these transformations. To do so we

simply modify our transformed velocity so that we can use Equation 1.5:

Q′ =
dQ

dT
=
dQ/dt

dT/dt
=
q̇ + εη̇

1 + ετ̇
≈ (q̇ + εη̇)(1 + ετ̇) = q̇ + ε(η̇ − τ̇ q̇) ,

where we have dropped the second order terms.4 We can package these three terms

3Because the scope of this language goes far beyond the needs of this thesis, we will simply make
use of a watered down version that is primarily concerned with one class of transformations. We
refer the reader to [9] for a lively discussion of the full version of theory as it relates to physics.

4In this section we use the prime to denote total derivatives with respect to the upper-case variable
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together into an object known as an infinitesimal generator:

E = τ
∂

∂t
+ η

∂

∂q
+ (η̇ − τ̇ q̇) ∂

∂q̇
. (1.6)

By applying this object to a function, its coordinates are modified in the fashion

prescribed by the generator. The action of the generator on our basic coordinates is

Q = eεEq ≈ (1 + εE)q = q + εη ,

T = eεEt ≈ (1 + εE)t = t+ ετ ,

Q̇ = eεE q̇ ≈ (1 + εE)q̇ = q̇ + ε(η̇ − τ̇ q̇) .

(1.7)

Of course if we set ε to a finite value, then the application of the generator describes

a collection of finite transformations. This construction has been completely general

and is applicable to all forms of continuous transformations. They are made useful by

imposing constraints on η and τ , relevant to the system at hand. Thus the work of

using this type of machinery is finding the functions of η and τ that constitute a valid

symmetry.

1.2.2 Noether’s Theorem

We are now in a position to formally prove Noether’s theorem, which entails a

transformation that causes the action to remain invariant. In order to do so, we must

find the transformation that leaves the Lagrangian invariant up to an additive total

time derivative, εJ . To that end we introduce the transformations from Equation 1.7

into the a generic Lagrangian L:(
L+ ε

dJ

dt

)
dt = L(Q,Q′, T )dT ⇒ L+ ε

dJ

dt
= L(Q,Q′, T )

dT

dt

⇒ L̃(Q,Q′, T ) = L(Q,Q′, T )(1 + ετ̇) .

If we explicitly plug our transformations into the Lagrangian,

L̃(Q,Q′, T ) = L
(
q + ηε, q̇ + ε(η̇ − q̇τ̇), t+ ετ

)
(1 + τ̇ ε) ,

and dot to denote total derivatives with respect to lower case, i.e.

Q′ =
dQ

dT
, Q̇ =

dQ

dt
.
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and take the Taylor expansion up to first order, we obtain

L(Q,Q′, T ) = L(q, q̇, t)

+ ε

[
τ̇L(q, q̇, t) + η

∂L(q, q̇, t)

∂q
+ (η̇ − q̇τ̇)

∂L(q, q̇, t)

∂q̇
+ τ

∂L(q, q̇, t)

∂t

]
.

(1.8)

By making use of the first and second forms of the Euler-Lagrange Equations5 we can

reduce the bracketed term in Equation 1.8 to

η
∂L

∂q
+ η̇

∂L

∂q̇
+ τ

∂L

∂t
+τ̇

(
L− q̇ ∂L

∂q̇

)
=

d

dt

[
η
∂L

∂q̇
+ τ

(
L− q̇ ∂L

∂q̇

)]
.

We plug this into Equation 1.8, which gives

L(Q, Q̇, T ) = L(q, q̇, t) + ε
d

dt

[
η
∂L

∂q̇
+ τ

(
L− q̇ ∂L

∂q̇

)]
= L(q, q̇, t) + ε

dJ

dt
.

If we equate the two terms under the total time derivatives,

dJ

dt
=

d

dt

[
η
∂L

∂q̇
+ τ

(
L− q̇ ∂L

∂q̇

)]
,

this implies that the quantity

ΦN = η
∂L

∂q̇
+ τ

(
L− q̇ ∂L

∂q̇

)
− J ,

is invariant. Just as in the case of the Euler-Lagrange equations, we can generalize

this argument to a system with multiple dynamical variables. Having assembled all of

the necessary pieces, we can now fully state Noether’s theorem:

5Using the Euler-Lagrange equation we can derive the second form of the Euler-Lagrange equation,
which reads:

∂L

∂t
=

dL

dt
− d

dt

[
∂L

∂q̇
q̇

]
.
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Noether’s Theorem

For a given physical system, a continuous transformation of the form

qi → qi + εηi(qj, q̇j, t) , t→ t+ ετ(qj, q̇j, t) , (1.9)

that satisfies the Killing equation, which is given by

τ̇L(qi, q̇i, t)+η
∂L(qi, q̇i, t)

∂qi
+(η̇i− q̇iτ̇)

∂L(qi, q̇i, t)

∂q̇i
+τ

∂L(qi, q̇i, t)

∂t
=
dJ

dt
,

(1.10)

will generate an invariant of the form

ΦN = ηi
∂L

∂q̇i
+ τ

(
L− q̇i

∂L

∂q̇i

)
− J , (1.11)

where the repeated indices are summed over.

We will conclude this chapter with a pair of examples that demonstrate the easy

power of this famous theorem.

Example: Translational Motion

Consider a generic first system, the free particle in one dimension. From our prior

knowledge of the system, linear momentum should be conserved. Our Lagrangian

is

L =
1

2
mẋ2 .

Clearly this will have the usual equation of motion, ẍ = 0. We use an infinitesimal

translational transformation by setting η = 1 and τ = 0, which yield transforma-

tions

x = x+ ε, t = t+ 0ε = t, ẋ = ẋ.

This gives the exact same Lagrangian, and so J = 0. We use this to derive our

Noether Invariant:

ΦN = η
∂L

∂q̇
+ τ

(
L− q̇ ∂L

∂ẋ

)
− J = mẋ− 0 = mẋ .
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Clearly momentum is conserved, just as we suspected it would be.

Let’s take another look at this example with a twist. We consider a new

Lagrangian:

L =
1

2
mẋ2 + ẋx .

Our new Lagrangian is different from the first just by a total time derivative,

namely

d

dt

(
1

2
x2
)

= xẋ .

This shouldn’t affect the Euler-Lagrange equations, which we can check by writing

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
=

d

dt
(mẋ+ x)− ẋ = mẍ+ ẋ− ẋ = mẍ = 0 .

The same transformation we used above will also work for this Lagrangian:

L̃ =
1

2
mẋ2 + ẋ(x+ ε) =

1

2
mẋ2 + ẋx+ εẋ = L+ ε

d

dt
(x) .

Thus J = x, and we can now write down the invariant associated with this

transformation:

ΦN = η
∂L

∂ẋ
− J = (mẋ+ x)− x = mẋ .

Clearly this system maintains its invariance across linear spatial transformation.
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Example: Conserved Hamiltonian

A commonly known fact is that the Hamiltonian of a system is conserved when its

associated Lagrangian has time-translation symmetry. Consider an infinitesimal

temporal transformation, such that η = 0 and τ = 1. This yields transformations:

x = x+ 0ε = x , t = t+ ε , ẋ = ẋ ,

which we apply to a generic Lagrangian L, and obtain

L = L(Xi, Ẋi, T )
dt

dT
= L(xi, ẋi, t+ ε)(1 + τ̇ ε) =

(
L(xi, ẋi, t) +

∂L

∂t
ε

)
(1 + 0)

= L+
∂L

∂t
ε ⇒ dJ

dt
ε =

∂L

∂t
ε ⇒ J =

∫
∂L

∂t
dt .

We now construct the associated invariant:

ΦN = 0
∂L

∂ẋi
+ 1

(
L− ẋi

∂L

∂ẋi

)
−
(∫

∂L

∂t
dt

)
=

(
L− ẋi

∂L

∂ẋi

)
−
(∫

∂L

∂t
dt

)
.

In the case where the Lagrangian has no explicit time dependence, that is when

∂L/∂t = 0, then we have

ΦN = L− q̇i
∂L

∂ẋi
= −H ,

as a conserved quantity. This is of course exactly the definition of the Hamiltonian

modulo a minus sign.



2

Nonequivalent Lagrangian Mechanics

The central requirement of Noether’s theorem, that the action remain invariant under

transformation, appears to restrict the types of symmetries that are allowed. If this

requirement is relaxed in such a way that the behavior of the action doesn’t matter

but the equations of motion that are generated remain the same, a large number of

conservation laws in unusual forms become available for study.

If you begin with one Lagrangian and transform it in a way that leaves the equations

of motion invariant, you typically do not leave the action invariant. Thus, you obtain a

second Lagrangian that is different from the first by more than a total time derivative.

Using this pair of nonequivalent Lagrangians, we will be able to build a conserved

quantity.

2.1 The Lutzky Invariant

Following the work of M. Lutzky [17, 18, 19, 20] we will consider a pair of Lagrangians,

L and L̃, for a given physical system with equations of motion

q̈i = αi(qj, q̇j, t).

If the Lagrangians are different by more than a total time derivative, we refer to them

as Nonequivalent. Each of these Lagrangians has a corresponding value known as

Jacobi’s Last Multiplier [23], which is defined:

M̃ = det

(
∂2L̃

∂q̇i∂q̇j

)
, M = det

(
∂2L

∂q̇i∂q̇j

)
,
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where the argument of the determinant is a symmetric matrix known as the Hessian

of the Lagrangian:

Mij =
∂2L

∂q̇i∂q̇j
.

With these tools in hand we can define the central piece of this theory, the Lutzky

Invariant, which is given by

ΦL =
M̃

M
.

We can show that the total time derivative of this quantity is zero, Φ̇L = 0, provided

the Euler Lagrange equations are satisfied and the equations of motion are shared

between the Lagrangians. We begin by taking the logarithm of the JLM, and making

use of a common matrix identity:

ln
(

detM
)

= Tr
(

lnM
)
.

If we take the total derivative we obtain

d

dt
Tr ln [M] =M−1ij

dMij

dt
=M−1ij

d

dt

[
∂2L

∂q̇i∂q̇j

]
=M−1ij

[
∂3L

∂t∂q̇i∂q̇j
+

∂3L

∂q̇i∂q̇j∂qk
q̇k +

∂3L

∂q̇i∂q̇j∂q̇k
q̈k

]
=M−1ij

[
∂

∂q̇i

(
∂2L

∂t∂q̇j
+

∂2L

∂q̇j∂qk
q̇k

)
− ∂

∂q̇j

(
d

dt

∂L

∂q̇i
− ∂2L

∂q̇i∂qk
q̈k

)
−∂q̈k
∂q̇j

∂2L

∂q̇i∂q̇k

]
.

We note that the equations of motion are defined by q̈k = αk, so this is

=M−1ij

[
∂

∂q̇i

(
∂2L

∂t∂q̇j
+

∂2L

∂q̇j∂qk
q̇k

)
− ∂

∂q̇j

(
∂2L

∂q̇i∂t
+

∂2L

∂q̇i∂qk
q̇k

)
− ∂αk
∂q̇j
Mik

]
.

Finally we make use of the fact that Mij is symmetric, so the first two terms in the

bracket above cancel, leaving

M−1ij
∂αk
∂q̇j
Mik = −δjk

∂αk
∂q̇j

= −∂αk
∂q̇k

=
d

dt
Tr lnM .



2.1. The Lutzky Invariant 19

That is, we have demonstrated that

d

dt
lnM = −∂αk

∂q̇k
.

This is true for all second-order Lagrangians that are non-singular, (Lagrangians whose

corresponding Jacobi Last Multiplier is non-zero). Naturally all of this machinery

also holds for the second Lagrangian, L̃. We can therefore form the corresponding

statement for M̃ and subtract one from the other:

d

dt

(
ln M̃

)
− d

dt
(lnM) =

d

dt

(
ln

[
M̃

M

])
= −∂αi

∂q̇i
−
(
−∂αi
∂q̇i

)
= 0 .

Thus at all points in time the ratio of the Jacobi Last Multipliers, ΦL, will be constant.

Lutzky Invariant

For a given physical system that is expressible in terms of two La-

grangians, and whose Jacobi Last Multipliers are non-zero, the ratio

ΦL =
M̃

M
= det

(
∂2L̃

∂q̇i∂q̇j

)
det

(
∂2L

∂q̇i∂q̇j

)−1
, (2.1)

will be an invariant of the motion.

While this quantity has been addressed by a variety of authors [6, 19, 20, 11],

this specific version of this construction is due to Lutzky, and so we credit him. For

additional discussion of this matter, see Appendix A.
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Example: Linearly Damped Motion

As a first example recall our pair of Lagrangians from our the previous chapter that

lead to the equations of motion for linear damped motion, which are ẍ = −βẋ:

L̃ =
1

2
ẋ2eβt , L = ẋ ln ẋ− βx .

We can construct the Lutzky invariant from these quantities:

ΦL =

(
∂2L̃

∂ẋ2

)(
∂2L

∂ẋ2

)−1
=

etβ

1/ẋ
= ẋetβ .

Fortunately for us we can also solve the equations of motion analytically:

ẍ = −βẋ ⇒ ġ = −βg ⇒ g = ẋ = Ae−tβ ⇒ x = −A
β
e−tβ + c1 ,

and when we plug this into our formula for ΦL, we obtain

ΦL = Ae−tβetβ = A ,

which is perfectly invariant.
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Example: Free Particle

As a second example consider the system of a free particle moving in a Newtonian

gravitation field. The equations of motion are ẍ = 0 and ÿ = −g. For this system

we can construct two Lagrangians

L =
1

2
ẏ2 + gy +

1

2
ẋ2 , L̃ = c1e

ẋ + c2e
−ẏ2/2−gy

(
2 + eẏ

2/2
√

2πẏ Erf

[
ẏ√
2

])
.

The first Lagrangian here is the traditional L = T −U . The second is more obscure

and was found using methods that we will develop in Section 2.3. We will now

form the corresponding Hessians and their corresponding Jacobi Last Multipliers:

M =
∂L

∂ẋi∂ẋj
=

(
1 0

0 1

)
⇒ M = 1,

M̃ =
∂L̃

∂ẋi∂ẋj
=

(
c1e

ẋ 0

0 c2e
− 1

2
ẏ2−gy

)
⇒ M̃ = c1c2e

ẋ− 1
2
ẏ2−gy.

Defining c3 = c1c2, the corresponding Lutzky Invariant is simply:

ΦL =
M̃

M
= c3e

ẋ− 1
2
ẏ2+gy .

If we differentiate this with respect to time we obtain

dΦ

dt
= c3e

ẋ− 1
2
ẏ2+gy

(
ẍ− gẏ − 2

2
ẏÿ

)
= c3e

ẋ− 1
2
ẏ2−gy (ẍ− ẏ(g + ÿ)) = 0 .
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2.2 Lutzky Symmetry Transformations

Lutzky approached the problem of generating nonequivalent Lagrangians by making

use of the Lie transformation language.1 We begin by declaring that we are interested

in the class of symmetries that leave the equations of motion invariant, rather than the

action. We can express this requirement symbolically by developing a generator that

incorporates acceleration transformations. That is, we need to know how q̈ transforms

under the transformations

t→ t+ ετ , qi → qi + εηi , q̇i → q̇i + ε(η̇i − q̇iτ̇) .

We can write

Q′′i =
dQ′i
dT

=
dQ′i/dt

dT/dt
=
q̈i + ε(η̈i − τ̈ q̇i − τ̇ q̈i)

1 + ετ̇
≈ q̈i + ε(η̈i − τ̈ q̇i − 2q̈iτ̇) .

Thus, we see that the new generator is given by:

F = τ
∂

∂t
+ ηi

∂

∂qi
+ (η̇i − τ̇ q̇i)

∂

∂q̇i
+ (η̈i − 2τ̈ q̇i − αiτ̇)

∂

∂q̈i
.

We now let the generator act on the equations of motion, q̈i = αi(qi, q̇i, t). Because

α does not have q̈-dependence, we can say that this transformation maintains the

equations of motion if F (q̈) = E(α), where E is the generator from Equation 1.6. This

gives

F (q̈i) = 0 + 0 + 0 + (η̈i − 2τ̈ q̇i − αiτ̇)
∂q̈i
∂q̈i

= η̈i − τ̈ q̇i − 2αiτ̇ = E(αi) .

Thus the equation that constrains which transformations are allowed for a particular

system is given by

η̈i − q̇iτ̈ − 2τ̇αi − E(αi) = 0 . (2.2)

This is known as the determining equation for Lie transformations. If this equation is

satisfied by a given ηi and τ , then the equations of motion are symmetric across this

transformation.

1This derivation closely follows the techniques developed in [17] and the more refined derivation
found in [13].
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Example: Free Particle

The most elementary example that we can use here is the free particle. As always

it has equations of motion ẍ = α = 0. We note the group action on α is

E(α) = τ
∂α

∂t
+ η

∂α

∂x
+ (η̇ − τ̇ ẋ)

∂α

∂ẋ
= τ0 + η0 + (η̇ − τ̇ ẋ)0 = 0 ,

and therefore the determining equation is

η̈ − ẋτ̈ − 2τ̇α− E(α) = η̈ − ẋτ̈ − 2τ̇0− 0 = 0 ⇒ η̈ − ẋτ̈ = 0 .

This appears to be a relatively simple equation, though η and τ are both functions

of x, ẋ and t. While it is straightforward to generate particular solutions, it is a

non-trivial task to completely solve it: the high degree of symmetry that is built

into the system leads to a large number of solutions. We elect to guess a simple

solution τ = x, η = x. This gives

η̈ − ẋτ̈ = ẍ− ẋẍ = 0− 0 = 0 ,

so our transformations satisfies the determining equation. We now implement the

infinitesimal transformations:

X = x+ εx , T = t+ εx , Ẋ = ẋ (1− ε(1− ẋ)) .

The canonical Lagrangian for this situation is L = 1
2
ẋ2, (setting the mass of the

particle to m = 1), which becomes

L̃ =
1

2
(Ẋ)2

(
∂T

∂t
+
∂T

∂x
Ẋ

)
=

1

2
ẋ2(1− 2ε− ẋε) ,

under transformation. We can then check to ensure that equations of motion are

correct:

d

dt

(
∂L̃

∂ẋ

)
− ∂L̃

∂x
=

d

dt

(
ẋ(1− 2ε− ẋε)− 1

2
ẋ2ε

)
= −2εẋẍ+ (1 + 2ε− εẋ)ẍ = ẍ(1 + 2ε− 2εẋ) = 0

⇒ ẍ = 0 .
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Finally we can compute the Lutzky invariant:

ΦL =

(
∂2L̃

∂ẋ2

)(
∂2L

∂ẋ2

)−1
= ((1− 2ε− ẋε)− ẋε− ẋε) (1)−1 = 1− ε(2 + 3ẋ) .

This quantity is invariant because the particle momentum ẋ is conserved.

2.2.1 Possible Issues

In a situation when the transformations ηi and τ are only dependent on qi and t, the

Lutzky invariant works coherently and gives the results that we have designed it to

give. However, possible issues arise when the transformations depend on q̇i.

In this or any other situation, solutions to the determining equation uniformly

transform the Lagrangian into a valid non-equivalent one. However, when the trans-

formations are velocity-dependent computation of the equations of motion requires a

little extra care. In this case, the transformed Lagrangians will generally be dependent

on q̈i in addition to the standard t, q, and q̇. To derive the equations of motion, we

need to make use of Euler-Lagrange equations for Lagrangians that are dependent on

acceleration,2 which are given by

d

dt

(
d

dt

[
∂L

∂q̈i

])
− d

dt

[
∂L

∂q̇i

]
+
∂L

∂qi
= 0 .

It is somewhat unnerving to be making use of the third order form of the Euler-

Lagrange equation in the context of the formalism built up around the physical

manifold defined by the equations of motion that are second order in time. However,

because of the way we have constructed the determining equations, the third-order

terms always perfectly cancel in the process of constructing the equations of motion.

Throughout his work on this topic, Lutzky makes use of the fact that q̈i =

α(qi, q̇i, t), and un-discriminatingly uses this relationship to flip back and forth between

representations. While this does allow his transformations to work on the equations of

motion, it will frequently generate Lagrangians that do not yield the right equations

of motion or generate a valid invariant.

While demanding that the equations of motion cannot be used in the construction

of new Lagrangians, and making use of the third order form of the Euler-Lagrange

2The derivation of these equations is identical to the one given in Section 1.1.2 with one additional
integration by parts argument, and so we can simply elect to quote them.
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equations will cause the transformed Lagrangians to give the right equations of motion,

our construction in Section 2.1 of the invariant assumes both Lagrangians are only

dependent on qi, q̇i, and t. If we add dependence on q̈i, the proof no longer works and

we do not generally get a valid Lutzky invariant. So we must add a new constraint in

order to guarantee the transformed Lagrangian, L̃, both successfully gives the correct

equations of motion and yields a valid Lutzky invariant, which is simply that ∂L̃
∂q̈

= 0.

We can state this in the form of a theorem:

Infinitesimal Transformations and the Lutzky Invariant

For a given physical system with equations of motion q̈i = αi(qj, q̇j, t),

transformations that satisfy the equation

η̈i − q̇iτ̈ − 2τ̇αi − E(αi) = 0 , (2.3)

will generate a valid Nonequivlant Lagrangian. However, if the trans-

formed Lagrangian is explicitly dependent on acceleration, that is if

∂L̃

∂q̈
= 0 , (2.4)

then that Lagrangian will not lead to a valid Lutzky Invariant.



26 Chapter 2. Nonequivalent Lagrangian Mechanics

Example: Linear Dampened Motion

We return to our usual example, the Linear Dampened Motion system. As always,

it has equation of motion ẍ = α = −βẋ. We will start with the nontraditional

Lagrangian, L = 1
2
ẋ2eβt.

The determining equation for this system is

E(α) = −β(η̇ − ẋτ̇) ⇒ η̈ + βη̇ + ẋ(βτ̇ − τ̈) = 0 .

We can construct a solution τ = βx, η = βxẋ, which we can demonstrate is a valid

transformation

β(2ẋẍ+ ẋẍ+ x
...
x ) + β2(ẋ2 + xẍ) + ẋ(β2ẋ− βẍ) =

(−3β2ẋ2 + β3xẋ) + β2(ẋ2 − βxẋ) + (β2ẋ2 + β2ẋ2) =

−3β2ẋ2 + 3β2ẋ2 + β3xẋ− β3xẋ = 0 .

This gives the transformations,

T = t+ εβx, X = x+ εβxẋ, Ẋ = ẋ+ βεxẍ ,

and the transformed Lagrangian,

L̃ =
1

2
(ẋ+ βεxẍ)2eβ(t+εβx)(1 + εβẋ) =

1

2
ẋ2eβt +

1

2
εβeβt(ẋ3 + βxẋ2 + 2xẋẍ) .

We can see clearly that this transformed Lagrangian will not be handled very well

by the Lutzky invariant due to its ẍ dependence.
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However the equations of motion generated by this Lagrangian are correct:

∂L

∂x
= 0 +

1

2
εβeβt(βẋ2 + 2ẋẍ),

− d

dt

[
∂L

∂ẋ

]
=
[
ẍeβt + βẋeβt

]
+

1

2
εβetβ(ẋ(5βẋ+ 8ẍ) + x(2β2ẋ+ 4βẍ+ 2ẍ)) ,

+
d

dt

[
d

dt

[
∂L

∂ẍ

]]
=

1

2
εβetβ(ẋ(4βẋ+ 6ẍ) + x(2β2ẋ+ 4βẍ+ 2ẍ)) .

Clearly the Euler-Lagrange equations prevent the ε terms from contributing to

the equations of motion and we get back precisely the ones that we would expect.
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2.3 Ansatz Methods

The process of generating nonequivalent Lagrangians using symmetry transformations

is non-trivial, and in some cases, due to the difficulty of solving the determining

equation, it is prohibitively difficult. As with many other problems in physics, our

solution is to use ansatz methods. This means guessing the basic structure of a

Lagrangian, applying the Euler-Lagrange equations, and matching the result to the

desired equations of motion.

These tools allow us to solve the reasonably broad class of systems whose equations

of motion are multiplicatively separable, that is, systems that are given by the following

form3

ẍ = H(x)G(ẋ) = F ′(x)G(ẋ), where F ′(x) = H(x).

Many systems of mild to great physical interest are constructible in this form, ranging

from the simple harmonic oscillator to relativistic motion in a variety of cases. [16]

We now need to find an appropriate Lagrangian to generate this equation of motion.

We first consider an additive ansatz:

L = f(x) + g(ẋ) .

This gives

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
⇒ d

dt
(g′) = f ′ ⇒ g′′ẍ = f ′ ,

which will give the correct equations of motion providing

f ′(x) = F ′(x) ⇒ f(x) = F (x) + c1 , g′′(ẋ) =
1

G(ẋ)
. (2.5)

The integration constant c1 simply adds a trivial constant term to the Lagrangian, so

we set it to zero.

3We are now tacitly introducing a notation for partial derivatives which we will make extensive
use of throughout this section. A prime, unless otherwise stated indicates the partial derivative with
respective to natural variable of the function, whereas a dot refers to a total time derivative. To wit:

F ′(x) =
∂F

∂x
, Ḟ (x) = ẋF ′(x) , G′(ẋ) =

∂G

∂ẋ
.

This is not unfamiliar notation, we simply needed to clarify.
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Now consider a multiplicative ansatz,

L̃ = f̃(x)g̃(ẋ).

This gives

d

dt

(
∂L̃

∂ẋ

)
=
∂L̃

∂x
⇒ f̃ ′g̃′ẋ+ f̃ g̃′′ẍ = gf̃ ′ ⇒ ẍ =

f̃ ′

f̃

g̃ − g̃′ẋ
g̃′′

.

In this case we see that we obtain the correct equations of motion if

f̃ ′(x) = f̃(x)F (x) ⇒ f̃(x) = AeF (x) , g̃ − g̃′ẋ = G(ẋ)g̃′′ . (2.6)

Again, the integration constant doesn’t affect the overall story, so we set A = 1. In

order to actually implement this theory we would need to explicitly solve the ordinary

differential equations in Equation 2.5 and Equation 2.6. Providing we were able to,

this would give the Lutzky invariant

ΦL =

(
∂2L̃

∂ẋ2

)(
∂2L

∂ẋ2

)−1
=
g̃′′

g′′
eF (x) = g̃′′eF (x)G(ẋ) = (g̃ − g̃′ẋ)eF (x) . (2.7)

Again, we can rigorously demonstrate that this statement is indeed an invariant:

dΦL

dt
= AeF (x) [F ′(x)ẋ(g̃ − g̃′ẋ) + ẍ(g̃′ − g̃′′ẋ− g̃′)]

= A(g̃ − g̃′ẋ)ẋeF (x)

[
G(ẋ)F ′(x)

G
− ẍ

G

]
= A

(g̃ − g̃′ẋ)

G
ẋeF (x) [G(ẋ)F ′(x)− ẍ] = 0 .

Evidently, all systems that are of the form ẍ = F ′(x)G(ẋ) will have an invariant of the

form of Equation 2.7. This is powerful result, because without knowing the trajectory

of the system, we were able to generate a conservation law.

However, the underlying reason that the object ΦL in Equation 2.7 is invariant

appears to be that it is related to the Hamiltonian associated with L̃, which has no

explicit time dependence. In Section 1.2.2 we demonstrated that a conserved Hamilto-

nian is a Noether conserved quantity associated with time translation invariance. In

this case the canonical momentum is given by

p =
∂L̃

∂ẋ
= f̃ g̃′ ,
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which allows us to construct the Hamiltonian,

H̃ = pẋ− L̃ = f̃ g̃′ẋ− f̃ g̃ = f̃(g̃ẋ− g̃) = AeF (x)[g̃′(ẋ)ẋ− g̃(ẋ)] ,

just as in Equation 2.7. This in turn implies that the class of invariants we have just

developed are in fact all equivalent to Noether invariants.4

The ansatz technique makes quick work of generating Lutzky invariants in this

and many other contexts. However, it doesn’t reveal anything about the type of

the transformation taking one Lagrangian to another. The presence of an invariant

suggests that there is a relationship between them, but the relationship may be

extremely cumbersome to describe.

Example: Simple Harmonic Oscillator

Let us consider a concrete example of a system where the ansatz technique gives us

traction: the simple harmonic oscillator. As always, this system has the equation

of motion ẍ = −ω2
0x. We note that it is clearly of the form we have an ansatz

solution for, with F ′(x) = −ω2
0x and G(ẋ) = 1. We will first generate a Lagrangian

from an additive ansatz, as above. Applying Equation 2.5, we obtain

g′′ = 1 ⇒ g =
1

2
ẋ2 + c1ẋ+ c2, f ′ = −ω2

0x ⇒ f = −1

2
ω2
0x

2 + c3 .

Evidently our first Lagrangian is simply

L =
1

2
ẋ2 + c1ẋ+ c2 −

1

2
ω2
0x

2 + c3 =
1

2
ẋ2 − 1

2
ω2
0x

2 ,

where we have set the constants of integration equal to zero, because they change

the Lagrangian only by a total time derivative. This is the familiar Lagrangian

that comes from the L = T − U prescription. We now want to generate a second

Lagrangian using multiplicative separation. Using Equation 2.6, we obtain in this

case
f̃ ′

f̃
= −x ⇒ ∂f̃

∂x
= −xf̃ ⇒ f̃(x) = c1e

−x2/2 .

4In fact it is one of the most common things to find that the Lutzky Invariant is the Hamiltonian
of one of the pair of Lagrangians.
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Finding g̃ is somewhat more complicated. We start by changing variables z = ẋ:

g̃ − g̃′z − g̃′′ = 0 ⇒ g̃′ − g̃′ − g̃′′z − g̃′′′ = 0 ⇒ −g̃′′z = g̃′′′ .

While ugly, this does have a solution:

g̃(ẋ) = −c2eẋ
2/2 + ẋ

(
c1 −

√
π

2
c2Erf

[
ẋ

2

])
.

We can now assemble these results into our second Lagrangian,

L̃ = e−x
2/2

(
−C2e

ẋ2/2 + ẋ

(
C1 −

√
π

2
C2Erf

[
ẋ

2

]))
.

While this Lagrangian may have an unintuitive form, a quick check in Mathematica

shows that this does in fact yield the equations of motion. Finally, we are able to

assemble the Lutzky Invariant:

ΦL =
∂2

∂ẋ2

(
e−x

2/2

(
−C2e

ẋ2/2 + ẋ

(
C1 −

√
π

2
C2Erf

[
ẋ

2

])))[
∂2

∂ẋ2
(
ẋ2 − x2

)]−1
=
C1

2
e−(x

2+ẋ2)/2 .

Just as we noted earlier, we have picked off an invariant related to the Hamiltonian,

which in this case is the energy.
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2.3.1 Extended Example: Lotka-Volterra

We will conclude this chapter by applying the techniques we have developed to

the celebrated Lotka-Volterra model of Predator-Prey deterministic non-semelparous

population dynamics. This is an interesting system for us because it consists of a pair

of first-order linked ordinary differential equations, and allowing us to demonstrate

how these techniques work in both nontraditional situations and situations when a

greater number of dynamical variable are in play.

Because of the unfamiliarity of this system to many physicists, we will begin by

reviewing its motivation. The most elementary version of this model describes the

relationship between a carnivorous predator population (say, for example, foxes) and

an herbivorous prey population (for example, rabbits). The basic motivation for the

model is given by five assumptions:

• In absence of predators, the prey population will increase exponentially.

• In absence of prey, the predator population will decrease exponentially.

• The prey population decreases at a rate proportionate to the size of the population

of predators.

• The predator population increases at a rate proportionate to the size of the

population of prey.

• The system is closed, so that the species do not evolve or change the way in

which they interact.

These assumptions lead to the following pair of ordinary differential equations, in

which the populations of prey and predators are denoted X and Y respectively,

Ẋ = X(a+ bY ) , Ẏ = Y (A+BX) , (2.8)

where B and b represent the interaction parameters between the species, while a

and A represent the natural re-population coefficients [25].5,6 Because this system

5This model is part of a large collection of models known as the Kolmogorov models, which are
given by

Ẋ = XF (X,Y ) , Ẏ = Y G(X,Y ) .

6In order to correctly model our assumptions we declare that a and B are greater than zero while
A and b are less than zero.
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is inherently deterministic, the dynamics of the system are fixed by the starting

conditions and parameters of the system. The types of behavior that the system can

take on are

1. Stable oscillatory paths, in which the populations fluctuate such that their phase

space representation develops an orbit around a central point at (X, Y ) = (A
B
, a
b
).

2. Extinction or unbounded growth, in which one of the populations reaches zero

which causes the other to either become extinct, or grow indefinitely.

The dynamics of each of these cases can be seen in Figure 2.1.

Figure 2.1: Flow density plots of the two types of dynamics available to this system.
The vectors indicate the direction of the change in population at each point. The
top graph shows regular oscillatory stability, while the graph on the bottom shows
extinction.

If we make use of coordinate transformations we will be able to employ the tools of

Nonequivalent Lagrangian Mechanics in this system. To do so we follow the suggestion

of M.C. Nucci [23] and take a change of variables for Equation 2.8 such that

X = ex , X = ey .

This causes the equations of population to become

ẋ = a+ bey , ẏ = A+Bex . (2.9)
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We now differentiate these to move our system into second-order form:

ẍ = bẏey , ÿ = Bẋex ,

and then use Equation 2.9 to separate them:

ẍ = b(A+Bex)ey = (A+Bex)(ẋ− a) ,

ÿ = B(a+ bey)ex = (a+ bey)(ẏ − A) .

We have now totally separated the equations of population for this system, which are,

coincidentally, of the precise form discussed in Section 2.3. Because the equations

of population are now separated we will generate a total Lagrangian of the form

L = Lx(x, ẋ, t) + Ly(y, ẏ, t). Let’s start with the x-dependent term. Using the

methods of the previous section we see that an additive ansatz will give us the

Lagrangian

Lx1 = [Bex + Ax] + [(ẋ− a) ln(ẋ− a)− ẋ] ,

while a multiplicative ansatz will give us:

Lx2 = ẋeAx+Be
x

∫ ẋ

1

1

s2
e−s−a ln(s−a)ds .

These are naturally mirrored in y:

Ly1 = [bey + ay] + [(ẏ − A) ln(ẏ − A)− ẏ] ,

Ly2 = ẏeay+be
y

∫ ẏ

1

1

s2
e−s−A ln(s−A)ds .

From these two pairs of partial Lagrangians, we can form four complete Lagrangians,

which in principle yields four Jacobi Last Multipliers, and finally six Lutzky invariants.

That being said, there is a lot of degeneracy among the invariants, so in the end we

only have one interesting conserved quantity. In one case, the Lutzky Invariant is
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given as:

ΦL = det

(
∂2Lx2+y1

∂ẋ2
∂2Lx2+y1
∂ẋ∂ẏ

∂2Lx2+y1
∂ẏ∂ẋ

∂2Lx2+y1
∂ẋ2

)[
det

(
∂2Lx1+y2

∂ẋ2
∂2Lx1+y2
∂ẋ∂ẏ

∂2Lx1+y2
∂ẏ∂ẋ

∂2Lx1+y2
∂ẋ2

)]−1

= det

(
−(ẋ− a)−1−aeBe

x+Ax−ẋ 0

0 1
ẏ−A

)[
det

(
1

ẋ−a 0

0 (ẏ − A)−1−Aebe
y+ay−ẏ

)]
= (ẋ− a)−a(ẏ − A)AeBe

x−bey+Ax−ay−ẋ+ẏ .

We can simplify this expression by considering the equations of population, obtaining

ΦL = (a+ bey − a)−a(A+Bex − A)AeBe
x−bey+Ax−ay−(a+bey)+(A+Bex)

= b−ae−ayBAeAxe2Be
x−2bey+Ax−ay−a+A = b−aBAeA−ae2(Ax+Be

x−ay−bey) .

We can now transform the whole thing back into the original coordinates. The inverse

transformation is given by

x = lnX, y = lnY .

Thus our invariant in the original coordinates is:

ΦL = b−aBAeA−ae2(A lnX+BX−a lnY−bY ) .

This we can show to be invariant:

dΦL

dt
= b−aBAeA−a

d

dt
e2(A lnX+BX−a lnY−bY )

= 2b−aBAeA−a(Ẋ(B + A
1

X
)− Ẏ (b+ a

1

Y
))e2(A lnX+BX−a lnY−bY )

= 2b−aBAeA−a(
Ẋ

X
(A+BX)− Ẏ

Y
(a+ bY ))e2(A lnX+BX−a lnY−bY )

=
2

XY
(Y X(a+ bY )(A+BX)−XY (A+BX)(a+ bY ))ΦL = 0 .

There is a well-known invariant for this system, which is usually presented without

derivation, as something that can be simply guessed by study of the system [30]. It is

given by

h = BX + A lnX − a lnY − bY .

Thus ΦL is simply the exponentiation of this, which is completely in line with our usual

mode of results. By applying our machinery we have offered a concrete derivation.





3

Unexpected Noetherian Invariants

We will conclude the work of this thesis with an in depth investigation of a system

which in not traditionally thought of as having Noetherian invariants: the damped

driven harmonic oscillator. To do so, we will make use of a technique developed by

Curie and Saletan1 in [6], in which an invariant is guessed from the form of an initial

Lagrangian and knowledge of the equations of motion. This result is then confirmed

in the context of the Lutzky invariant machinery by constructing a second Lagrangian,

and then in the context of Noetherian analysis using traditional methods.

We will motivate the technique of Curie and Saletan by using it to reproduce a

number of results pertaining to the damped harmonic oscillator that are known from

the literature ([1], [26], [28]). Once the tools are in hand we will approach the driven

damped harmonic oscillator, which the literature does not appear to have anything to

say about.

3.1 Damped Harmonic Oscillator

We begin by considering a traditional system in undergraduate mechanics, the damped

harmonic oscillator. The system is dissipative, so neither energy nor momentum are

conserved. Its equation of motion is:

ẍ+ γẋ+ ω2
0x = 0 , (3.1)

1We stumbled upon this procedure prior to reading the work of Curie and Saletan.



38 Chapter 3. Unexpected Noetherian Invariants

where ω0 is the natural frequency and γ is the dampening parameter. We propose an

ansatz,

L = h(t)
(
f(x) + g(ẋ)

)
.

Applying the Euler-Lagrange equations gives:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
=

d

dt
(hg′)− hf ′ = h′g′ + hg′′ẍ− hf ′ = 0 ⇒ ẍ =

f ′

g′′
− h′

h

g′

g′′
.

Forcing these terms to conform to Equation 3.1 gives the constraints

f ′ = ω2
0x, g′′ = 1, h′ = γh,

g′

g′′
= −ẋ ,

which have solutions

f =
1

2
ω2
0x

2 , g =
1

2
ẋ2 , h = eγt .

This yields the Lagrangian

L = eγt(ẋ2 − ω2
0x

2) . (3.2)

Here we are, as usual, setting irrelevant constants of integration to zero or one to put

our Lagrangian in the simplest form possible. This nicely agrees with the Lagrangian

found in [26]. We can also verify that Equation 3.2 yields the correct equation of

motion:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 ⇒ d

dt

(
2ẋeγt

)
+ 2ω2

0xe
γt = 0 ⇒ ẍ+ γẋ+ ω2

0x = 0 .

We now need to solve the equations of motion, following the familiar procedure of

taking an ansatz: x = Aeρt, where ρ is a undetermined constant. By plugging this

into our equations of motion, we obtain,

ẍ+ γẋ+ ω2
0x = 0 ⇒ Aρ2eρt + γAρeρt + ω2

0Ae
ρt = 0 ⇒ ρ2 + γρ+ ω2

0 = 0 .

There are two solutions to this algebraic equation:

ρ± =
1

2

(
−γ ±

√
γ2 − 4ω2

0

)
. (3.3)

In order to completely span the solution space of the differential equation, we write

our full solution as a linear combination of the solutions developed by the algebraic
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equation:

x = Aeρ+t +Beρ−t , ẋ = Aρ+e
ρ+t +Bρ−e

ρ−t .

Again, our project here is to find constants of the motion for this system, so we need

to isolate the integration constants A and B in terms of x, ẋ, and t. We can rewrite

our system using matrix multiplication as(
x

ẋ

)
=

(
eρ+t eρ−t

ρ+e
ρ+t ρ−e

ρ−t

)(
A

B

)
.

This allows us to take the matrix inverse and solve for A and B:(
A

B

)
=

1

(ρ− − ρ+)e(ρ−+ρ+)t

(
ρ−e

ρ−t −eρ−t

−ρ+eρ+t eρ+t

)(
x

ẋ

)
,

which gives

A =
ρ−x− ẋ

(ρ− − ρ+)eρ+t
, B =

−ρ+x+ ẋ

(ρ− − ρ+)eρ−t
.

These are “constants of the motion” set by the initial conditions, so any combination

of them is also constant. A particularly useful combination is their product:

AB =

(
ρ−x− ẋ

(ρ− − ρ+)eρ+t

) (
−ρ+x+ ẋ

(ρ− − ρ+)eρ−t

)
= −

(
ρ+ρ−x

2 − (ρ+ + ρ−)xẋ+ ẋ2

(ρ− − ρ+)2

)
e−(ρ++ρ−)t .

(3.4)

There are a number of combinations of ρ+ and ρ− that would be simpler if we rewrote

them in terms of the original parameters of the problem:

ρ− + ρ+ = −γ , ρ− − ρ+ =
√
γ2 − 4ω2

0 , ρ−ρ+ = ω2
0 .

Thus Equation 3.4 becomes:

AB = −ω
2
0x

2 + γxẋ+ ẋ2

(
√
γ2 − 4ω2

0)2
eγt = −(ω2

0x
2 + γxẋ+ ẋ2)

eγt

γ2 − 4ω2
0

. (3.5)

This result agrees with the invariant found in [1]. We want to show that this is

a Lutzky invariant, so we must now construct a second Lagrangian. We start by
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assuming,

ΦL = AB =
M̃

M
⇒ MΦL = M̃ .

Here we use our first Lagrangian to generate M̃ :

M̃ =
∂2L̃

∂ẋ2
= 2eγt ,

and this implies that

−(ω2
0x

2 + γxẋ+ ẋ2)
eγt

γ2 − 4ω2
0

M = 2eγt ⇒ M =
∂2L

∂ẋ2
=
−2(γ2 − 4ω2

0)

ω2
0x

2 + γxẋ+ ẋ2
.

By direct integration we can compute the Lagrangian L that gives the desired Jacobi

Last Multiplier, M:

∂2L

∂ẋ2
=

−(γ2 − 4ω2
0)

ω2
0x

2 + γxẋ+ ẋ2
⇒ ∂L

∂ẋ
=

2

x
tanh−1

[
γx+ 2ẋ√
4ω2 − γ2x

]
,

L =
√

4ω2
0 − γ2

(
2ẋ+γx
x

tanh−1

[
γx+2ẋ√
4ω2−γ2x

]
− 1

2

√
4ω2

0−γ2 ln[ω2x2+γxẋ+ẋ2]
)
. (3.6)

This Lagrangian agrees with the results of [28]. Again, we are fixing the constants of

integration to put this in the simplest form possible.

However, the assumption that the constants of integration are simply detritus can

accidentally yield false positives and as a resut this procedure can produce a second

Lagrangian that does not give the correct equations of motion.2 We generally need to

check that the new Lagrangian is valid. For Equation 3.6, we have

2Nucci [23] contends that this error can be avoided by the integration scheme

L =

∫
Mdẋdẋ +

∂F

∂x
+

∂F

∂t
+ l3

Where F is an arbitrary function of x and t (but not ẋ), and l3 is related to the definition of the
Jacobi Last Multiplier.
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d

dt

[
∂L

∂ẋ

]
=

d

dt

[
2
√

4ω2 − γ2
x

tanh−1

[
γx+ 2ẋ√
4ω2 − γ2x

]]

=
γ2 − 4ω2

x
− 2

√
4ω2 − γ2ẋ
x2

tanh−1

[
γx+ 2ẋ√
4ω2 − γ2x

]

− (γ2 − 4ω2)(ω2x+ γẋ+ ẍ)

ω2x2 + γxẋ+ ẋ2
,

∂L

∂x
=
γ2 − 4ω2

x
− 2

√
4ω2 − γ2ẋ
x2

tanh−1

[
γx+ 2ẋ√
4ω2 − γ2x

]
,

0 =
d

dt

[
∂L

∂ẋ

]
− ∂L

∂x
= −(γ2 − 4ω2)(ω2x+ γẋ+ ẍ)

ω2x2 + γxẋ+ ẋ2
,

⇒ 0 = ω2x+ γẋ+ ẍ .

Through simple observation we can see that L̃ is independent of time, which means

that it has a corresponding conserved Hamiltonian, H̃. In fact, the invariant found

in Equation 3.5 is related to H̃. This agrees with the major thrust of [1], which

demonstrates through direct application of Noether’s theorem that the damped

harmonic oscillator has a Noether invariant.

3.2 Damped Driven Harmonic Oscillator

The natural follow up to the damped harmonic oscillator is the driven damped

harmonic oscillator. We will consider a sinusoidal driving term at the same frequency

as the natural frequency of the system,3 which gives us the equation of motion

ẍ = −ω2
0x− γẋ+ f0 cos(ω0t) .

We begin by proposing a time-dependent Lagrangian, of a similar form as our initial

Lagrangian in the previous section,

L = eγt
(

1

2
ẋ2 − 1

2
ω2
0x

2 + f0x cos(ω0t)

)
.

3The same story holds for a driving frequency that is not the same as the natural frequency,
but we will present this case here and leave it to the reader to verify that the more general case in
Mathematica.
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This gives the equation of motion

d

dt

[
∂L

∂ẋ

]
− ∂L

∂x
= eγtẍ+ γeγtẋ− eγt(−ω2

0x+ f0 cos(t))

= ẍ+ ω2
0x+ γẋ− f0 cos(ω0t) = 0 ,

just as we expect it to be. We now need to solve this system, in this case using the

method of undetermined coefficients, where we propose an ansatz based on the form of

the non-homogenous term in the differential equation. Here the non-homogenous term

is f0 cos(ω0t), so we propose x = A cos(ω0t) +B sin(ω0t). This leads to the complete

solution:

x(t) = Aeρ+t +Beρ−t +
f0
γω0

sin(ω0t) , x′(t) = Aρ+e
ρ+t +Bρ−e

ρ−t +
f0
γ

cos(ω0t) ,

where, ρ± are defined as in Equation 3.3. We can rewrite these expression as a matrix

equation (
x

ẋ

)
=

(
eρ+t eρ−t

ρ+e
ρ+t ρ−e

ρ−t

)(
A

B

)
+

f0
γω0

(
sin(ω0t)

ω0 cos(ω0t)

)
,

and therefore we have(
A

B

)
=
e−t(ρ++ρ−)

(ρ+ − ρ−)

(
ρ−e

ρ−t −eρ−t

−ρ+eρ+t eρ+t

)[(
x

ẋ

)
− f0
γω0

(
sin(ω0t)

ω0 cos(ω0t)

)]
.

Next we construct Φ = AB as our proposed Lutzky invariant, just as before:

Φ =
eγt

γω0(γ − 4ω2
0)

(
f0ω0 cos(ω0t)(γx+ 2ẋ) + f0 sin(ω0t)(2ω

2
0x+ γẋ)

− γω0(ω0x
2 + γxẋ+ ẋ2)− f 2

0

2γ
(2ω0 + γ sin(2tω0))

)
.

(3.7)

We then build our second Lagrangian by making use of Φ = AB = M/M̃ , with

M̃ =
∂2L̃

∂ẋ2
= eγt .

This allows us to compute M̃ , by manipulating

M̃ =
∂2L̃

∂ẋ2
=

M

AB
=

1

AB

∂2L

∂ẋ2
,
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so that

∂2L

∂ẋ2
=

γω0(γ−4ω2
0)(

f0ω0 cos(ω0t)(γx+2ẋ)+f0 sin(ω0t)(2ω2
0x+γẋ)−γω0(ω0x2+γxẋ+ẋ2)−

f20
2γ

(2ω0+γ sin(2tω0))

) .

While this is menacing, it turns out that it is in fact analytically tractable. Repeated

integration gives the Lagrangian

L =

√
γ2 − 4ω2

0

(γω0x− f0 sin(ω0t))

(
f0(2ω0 cos(ω0t)+γ sin(ω0t)) tanh

−1

[
2f0ω0 cos(ω0t)+f0γ sin(tω0)−γω0(γx+2ẋ)√

γ2−4ω20(−f0 sin(ω0t)+γω0x)

]

+γω0(γx+2ẋ) tanh−1

[
2f0ω0 cos(ω0t)+f0γ sin(tω0)−γω0(γx+2ẋ)√

γ2−4ω20(f0 sin(ω0t)+γω0x)

])
+ (γ2 − 4ω2

0) ln [f 2
0 (2ω0 + γ sin(2tω0))− 2γ(f0ω0 cos(ω0t)(γx+ 2ẋ)

+f0 sin(ω0t)(2ω
2
0x+ γẋ)− γω0(ω

2
0x

2 + γxẋ+ ẋ2))
]
.

(3.8)

By checking Mathematica, we can see that this Lagrangian yields the right equation of

motion. This demonstrates that the quantity constructed in Equation 3.7 is a Lutzky

Invariant. It is pleasantly reassuring that we recover the invariant that we derived for

the DHO when we set f0 to zero. This procedure also works for the a time-dependent

driving force of f0 cos[ω(t)t], however it is a quite cumbersome thing to write down,

so again we, refer the reader to Mathematica.

The interesting thing about these Lagrangians is that each of them depend explicitly

on time, so neither has an associated conserved Hamiltonian. While it is tempting to

assume that this implies the quantity that we have developed is not related to any

Noether invariant, as we will see in the next section, this is not the case.
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3.2.1 Noether Analysis

Now consider this system from the perspective of Noether analysis, for which we can

roughly follow the techniques presented in [1].4 Again we will assume the driving

frequency and the natural frequency are the same. We begin by writing down the

form of the Noether invariant for this system:

ΦN = (τ ẋ− η)
∂L

∂ẋ
− τL+ J

= (τ ẋ− η)
[
ẋeγt

]
− τeγt

(
1

2
ẋ2 − 1

2
ω2
0x

2 + f0x cosω0t

)
+ J .

(3.9)

where J , η, and τ are unknown functions of x, ẋ, and t. By assumption this is an

invariant, so the total time derivative must be equal to zero. This is gives us

dΦN

dt
= (τ̇ ẋ+ τ ẍ− η̇)ẋeγt + (τ ẋ− η)ẍeγt + (τ ẋ− η)ẋγeγt

− τ̇ eγt
(

1

2
ẋ2 − 1

2
ω2
0x

2 + f0x cosωt

)
− τγeγt

(
1

2
ẋ2 − 1

2
ω2
0x

2 + f0x cosω0t

)
− τeγt

(
ẋẍ− ω2

0xẋ+ f0ẋ cosω0t− f0ω0x sinω0t
)

+
dJ

dt

= −f0 cos(ω0t)η + ω2
0xη − f0γ cos(ω0t)xτ + f0ω0 sin(ω0t)xτ +

1

2
γω2

0x
2τ

− 1

2
γτ ẋ2 − ẋ∂η

∂t
− ẋ2 ∂η

∂x
+

[
−f0 cos(ω0t)x+

1

2
ω2
0x

2

]
∂τ

∂x
ẋ+

1

2
ẋ3
∂τ

∂x

+

[
−f0 cos(ω0t)x+

1

2
ω2
0x

2

]
∂τ

∂t
+

1

2
ẋ2
∂τ

∂t
+
∂J

∂t
e−tγ +

∂J

∂x
ẋe−tγ .

4We will be performing this analysis on the original Lagrangian we wrote down for this system
rather than the one we derived. We invite the reader to try their hand at this type of analysis for
the Lagrangian found in Equation 3.8, however we suggest that such a project might require the
time remaining until the heat death of the universe.
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Following the technique of [1], we insist that the coefficients of each power of ẋ must

separately equal zero. This gives us four equations

ẋ0
[
ω2
0xη+

1
2
ω2
0x

2(γτ+ ∂τ
∂t )−f0(η+γxτ+x

∂τ
∂t ) cos(ω0t)+f0ω0 sin(ω0t)xτ+

∂J
∂t
e−tγ
]

= 0 , (3.10)

ẋ1
[
−∂η
∂t

+

[
−f0 cos(ω0t)x+

1

2
ω2
0x

2

]
∂τ

∂x
+
∂J

∂x
e−tγ

]
= 0 , (3.11)

ẋ2
[
−1

2
γτ − ∂η

∂x
+

1

2

∂τ

∂t

]
= 0 , (3.12)

1

2
ẋ3
[
∂τ

∂x

]
= 0 . (3.13)

From Equation 3.13, we see that τ must be solely dependent on time, which we will

now denote τ = β(t). This allows us to derive η from Equation 3.12:

∂η

∂x
=

1

2

(
β̇ − γβ

)
⇒ η =

1

2

(
β̇ − γβ

)
x+ ψ(t) =

1

2
β̇x− 1

2
γβx+ ψ(t) ,

where ψ(t) is a constant of integration. This in turn allows us to compute the Noether

current from Equation 3.11:

∂J

∂x
=
∂η

∂t
etγ =

(
1

2

(
β̈ − γβ̇

)
x+ ψ̇

)
etγ ⇒ J =

(
1

4

(
β̈ − γβ̇

)
x2 + ψ̇x

)
etγ + ξ(t) ,

where ξ(t) is a second constant of integration. We then insert these quantities into

Equation 3.10:

0 = ω2
0

(
1

2
β̇x2 − 1

2
γβx2 + xψ(t)

)
+

1

2
ω2
0x

2
(
γβ + β̇

)
− f0

(
3

2
β̇x+

1

2
γβx+ ψ(t)

)
cos(ω0t) +

(
1

4

(
β̈ − γβ̇

)
x2 + ψ̇x

)
γ

+

(
1

4

(...
β − γβ̈

)
x2 + ψ̈x+ ξ̇e−γt

)
+ f0ω0 sin(ω0t)xβ .

Repeating the technique we just used to derive Equations 3.10−3.13, we break this

into three equations with different dependencies on x, each of which must separately
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vanish:

x0
[
ξ̇e−γt − f0ψ(t) cos(ω0t)

]
= 0 , (3.14)

x1
[
ω2
0ψ(t) + ψ̇γ + ψ̈ + f0ω0 sin(ωt)β − 1

2
f0

(
3β̇ + γβ

)
cos(ω0t)

]
= 0 , (3.15)

1

2
x2
[(

4ω2
0 − γ2

)
β̇ +

...
β = 0

]
= 0 . (3.16)

The complete solution to Equation 3.16 is given by

β =
A

µ
etµ +

B

µ
e−tµ + C ,

where µ =
√
γ2 − 4ω2

0. However, in interest of simplicity we will only study the

solution β = C = 1. This causes Equation 3.15 to become:

ω2
0ψ(t) + ψ̇γ + ψ̈ + f0ω0 sin(ω0t)−

1

2
f0γ cos(ω0t) = 0 ,

which is just the equation of motion for another damped driven harmonic oscillator.

This has complete solution,

ψ(t) = C1e
t
2
(−γ−µ) + C2e

t
2
(−γ+µ) +

f0
γ

cos(ω0t) +
f0

2ω0

sin(ω0t) .

We will continue our interest in simplicity and specialize to the particular solution in

which C1 = C2 = 0. Plugging this into Equation 3.14 gives us an expression for ξ

ξ̇ = f 2
0 e

γt cos(ω0t)

(
1

γ
cos(ω0t) +

1

2ω0

sin(ω0t)

)
.

This also has a closed form solution, which is given by

ξ(t) =
f 2
0 e

γt

2γ2ω0

(
ω0 +

γ

2
sin(2ω0t)

)
+ C3 .

One last time we choose the simplest option: C3 = 0. We now explicitly form our

transformations:

η = −1

2
γx+

f0
γ

cos(ω0t) +
f0

2ω0

sin(ω0t) , τ = 1 ,
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as well as the associated Noether current,

J = f0

(
1

2
cos(ω0t)−

ω0

γ
sin(ω0t)

)
xetγ +

f 2
0 e

γt

2γ2ω0

(
ω0 +

γ

2
sin(2ω0t)

)
.

By plugging these expressions into Equation 3.9 we can obtain the Noether conserved

quantity:

ΦN =
eγt

2γω0

[
γω0

(
ω2
0x

2 + ẋ2 + γxẋ
)
− (2ẋ+ γx) f0 cos(ω0t)

+
f 2
0

2γ
(2ω0 + γ sin(2ω0t))− f0

(
2ω2

0x+ γẋ
)

sin(ω0t)

]
.

This recovers the Lutzky Invariant developed in Equation 3.7, up to a multiplicative

factor. Specifically, we have

ΦN = −(γ2 − 4ω2
0)

2
ΦL .

We have thus demonstrated that the Lutzky invariant gives results that are equivalent

to the results of Noether’s theorem in the case of the damped driven harmonic oscillator.

This is completely characteristic of our usual results and continues to speak to the

power of Noether’s theorem. It appears as though this is evocative of the general

behavior of the Lutzky invariant, that it is generally a Noether invariant in disguise.





4

Conclusion

4.1 Overview

We set out to study a brand of classical mechanics that promised a new perspective

on the construction and manipulation of invariants in dynamical systems. In the

process, we considered a wide variety of cases, both familiar and unfamiliar, and in

almost every one found that our Nonequivalent Lagrangian Mechanics made quick

work of generating conserved quantities, but they were invariably related to Noether

invariants. At the core of this study was a meditation on the interaction between

NLM and Noether’s Theorem. The two seem to be deeply and intrinsically linked,

but due to the abstract nature of each of them, their exact relationship is still veiled.

We started by reviewing the classical mechanics background that was necessary to

construct Noether’s theorem in its simplest perturbative form. Using this construction

we were able to derive a couple of traditional conserved quantities.

We then introduced the principal theorem behind NLM, as well as as the standard

approach to generating nonequivalent Lagrangians via infinitesimal transformations.

After demonstrating the holes in that procedure, we proceeded to develop our own

ansatz-based approach to generating Lagrangians, which we used to explore the well

known, but poorly motivated, conservation law of the Lotka-Volterra Predator-Prey

population dynamics system.

Finally, we engaged in an extended case study of the damped driven harmonic

oscillator. We demonstrated that this system has an associated Lutzky invariant,

which we then rigorously demonstrated to be equivalent to a Noether Invariant.



50 Chapter 4. Conclusion

After reviewing dozens of cases, and constructing endless Lutzky invariants, we see

no evidence of conservation laws that are not related to Noetherian quantities. The

lack of robust methodology for easily determining whether or not a invariant has an

associated Noether symmetry is frustrating. Yet, despite this lack of understanding in

the foundation, the theory that has been developed here yields a strong set of tools

for rapidly finding conserved quantities.

4.2 Future work with NLM

Throughout the process of researching this project, we became rather taken by a wide

variety of tangents to the main work. If time permitted they would provide excellent

applications for Lutzky’s theory of invariants.

It would be interesting to develop a version of this theory for discretized space.

One of the current positions on the topic says that there cannot be a Noether Law

for discrete spaces because the action cannot be conserved across transformation. [3]

However this may present no problem for the Lutzky machinery. The most direct

application of this new theory would be to develop a theory of conservation laws for

cellular automata. [14]

In [15], J R Farias and N L Teixeira start to approach a field theoretic version of

this brand of mechanics. However, they are plagued by the same issue that exists

in most of the work on this topic: they create a mathematical formalism but do not

use it do any meaningful work. There are a wide variety of conceivable applications

for a complete version of their formalism, but we suggest that the most interesting

one might to give a more direct derivation of the Kerr metric than is commonly

available.[7]

It is also reasonably well known that one can write down a Lagrangian that yields

the Schrödinger Equation. Using this knowledge it might be possible to generate an

additional Lagrangian, and thereby engage the machinery of Lutzky. The original

purpose of the NLM theory1 was in fact to approach quantum theory from a novel

direction, however their work was primarily based on a Hamiltonian version of the

theory, which unfortunately did not generate any substantial results. With the

machinery that has been developed for this theory over the past fifty years, we suggest

that unusual results for quantum mechanics might be possible.

1Found in the work Currie and Saletan from 1966.
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The ambiguity that is built into the Lagrangian representation of dynamical

systems, allowing for multiple Lagrangians to be constructed for the same dynamical

system, opens a floodgate for new insights into these systems. The limits of these

applications are not clear, but in their boundless allure and ability to give new

perspectives on systems, we want to believe.





A

Literature Review

One of the central difficulties in completing the research for this project has been the

disunity of both name and content across the many sources. There are a wide variety

of names for the topic, and an endless set of different but related approaches, and very

little communication between the authors.

However, the main narrative of Nonequivalent Lagrangian Mechanics is reasonably

simple, and its relationship to this thesis can be broken roughly into five pieces. These

divisions and the relationships between them can be seen in Figure A.1. We note that

throughout the literature authors reference so called Non-Noether invariants, however,

as we have discussed, these invariants tend to be just esoteric Noether conservation

laws in disguise.

Precursors:

There are two main papers that allowed the work of NLM to happen. Chronolog-

ically first, in 1941 Douglas[5] developed a set of criteria, known as the Helmholtz

conditions, that described which dynamical systems could have a Lagrangian

representation. This work discussed a relative ambiguity in the form of the

Lagrangian that would eventually lead to our work.

In 1966 Currie and Saletan1 published a paper [6] which described a method for

manipulating this ambiguity, with the end goal of making new predictions about

quantum mechanics. This paper was poorly received and was largely ignored for

most of the following decade.

NLM:

There are a wide variety of authors that have discussed the premises of ma-

nipulating pairs of Lagrangians to generate invariants. In this thesis we have

1Who referred to their work as qEquivilance.
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primarily focused on the work of M. Lutzky because we came across his work

first, and so have taken it as cannon.

In Lutzky 1978 [17] our author developed a notion of infinitesimal transformations

and their relationship to dynamical systems, and applied it to the simple harmonic

oscillator. It was not until Lutzky 1979a[18] that the notion of the Lutzky

invariant was developed. In Lutzky 1979b[19] he presented a more concrete proof

of the invariant. Finally in Lutzky 1981 [20] he presented a case study describing

a discrete symmetry leading to a particular conservation law for the free particle,

and suggested that the general invariant he developed offers a perspective into a

wider regime of invariants than Noether gives access to.

Alternative Perspectives:

There are a wide variety of additional authors who worked on this topic, whose

work describes an equally complete cannon. Principle among these alternative

perspectives are the works of Hojman[11]2, Sarlet[29], and Crampin[4]. In the

period of 1980-1983, each of these authors developed their own theory of the

relationship between Non-Noether Invariants and Lagrangians.

The most important of these works was Crampin 1983 [4] in which Crampin took

up the work of approaching the topic from a differential geometry perspective.

He proved that most of the work on NLM had been trivial in light of the deeper

framework. Following the publication of this article the interest in the topic

pretty well died out. Authors such as Lutzky, Hojman, and others would still

publish an occasional article on the matter, such as Hojman 92 [12] or Lutzky 95

[21], however the works would appear in more and more obscure journals.

Dissipative Systems:

While not completely essential to the main narrative of NLM, there have been

a variety of approaches to studying the mechanics of dissipative systems using

some of the theories of nonequivalence. In our work we consider some of the

works of Subrata Ghosh and collaborators, who discuss, in Ghosh 2004 [1] and

Ghosh 2007 [28], the nontraditional features of the damped harmonic oscillator.

The approach in [1] primarily focuses on symmetry, while the latter is more

centered on being able to generate endless collections of Lagrangians. On a

similar tangent we also considered the works of M.C. Nucci, whom we discuss

in the context of the Lotka-Volterra system. In her huge variety of papers on

2Who refers to the project as either Equivalent or s-Equivalent
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the topic of non-traditional Lagrangian analysis, such as Nucci 2012 [23], she

generates enormous families of Lagrangians for a wide range of cases, including

dissipative system[22], and other biological systems.

Modern Perspectives:

Despite the main period of interest in this theory being pretty well over, interest

will occasionally flair up for a paper or two. The main modern perspective

that we looked at in our work is in the writings of Zhang [13], which offers a

pretty generic view on the types of invariants constructed by using infinitesimal

transformations. Additionally, F.X. Mei has been quite productive in recent

years in his works about new types of symmetries that generate what he claims

are non-Noether invariants, such as in Mei 2013 [8].
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Figure A.1: Diagram of the relative relationship among the various authors that were
concerned with the theory of Nonequivalent Lagrangian Mechanics. In this figure lines
connecting article represent citations, which are ordered by noting that time flows
roughly downwards.
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