DESIGN \& ANALYSIS OF

 TABLE CARTOGRAMSSimultaneous Multipurpose Tabular Area-Encoding Displays

Table cartograms are a type of data visualization that represent tables of numbers in a graphically intriguing and theoretically rich way.

They represent a table of numbers as a grid of quadrilateral cells, whose areas are changed to fit the data. Like a heatmap that has been area-ed rather than colored

They have two defining properties:
I.They possesses an Accurate Embedding of Data as area.
2. They have a Planar Grid-like Topology that is constrained to a rectangle

145 Color is relative to full year, size is relative to month

Table cartograms are great at showing part-towhole relationships, especially when the input data has meaningfully ordered rows and columns.

This makes them good for calendar displays and as enhancements to tables that already have a canonical ordering. In the year/month calendar to the left we are clearly able to make ordinal comparisons (the weekends have few tickets,and some particular weeks have very few). In the DnD alignment table below we can make easy part-to-whole comparisons without needing to tediously examine each individual pair of cells.

	Lawful	Neutral	Chao
Good	6.99\%		25.0\%
Neutral			

	Lawful	Neutral	Chaotic
Good	6.99%	23.9%	25.0%
Neutral	7.69%	9.49%	16.4%
Evil	5.00%	3.90%	1.70%

Popularity of DnD alignments, src informal online poll

Would you agree that a good visualization will reflect changes to its data in a way that makes sense to a human?

This is the basic principle behind Algebraic Vis Design (AVD). We use this lens as a mechanism to theoretically motivate our understanding of the table cartogram's properties. Taking this approach (rather than conducting user studies) allows us to economically scan the space of unknown unknowns about table cartograms, reducing them to known unknowns (which users studies are great at addressing).

Visual change

Failure mode
Success mode

These two multiplication tables shown as table cartograms are equally right! A hallucinator!! This type of property makes it difficult to use table cartograms in visual analytics contexts where repeatable and consistent observations are important for gaining an understanding of the data.

Here we show a summary of the basic failure modes in Algebraic Vis Design A significant $\boldsymbol{\alpha}$ might change something important about the data, while an insignificant $\boldsymbol{\alpha}$ might change something about the representation (like changing the order of a data in a scatterplot).

UNAMBIGUOUS

CONFUSER

CONFUSER

In the above chart we consider three tables of data from across this zine and apply a variety of data transforms ($\alpha \mathrm{s}$). Some of these transforms remain legible across transformation. While others do not! Here are the important takeaways from the analysis:

Changes to the scale are invisible. Table cartograms should not be used for presentations where scale matters

Reciprocal changes are visible. This shows that size order is visually maintained in table cartograms, which suggests that ordinal measurements (comparisons between discrete but ordered entities) are fair game. This confirms some of the part-to-whole analyses we've seen!

Small changes are invisible. This suggests that (when individual cells matter) data sets should be selected in such a way that they stay visible across transforms. A good rule of thumb is that tables should be selected that are no more than three orders of magnitude in range and contain no more than a few hundred cells.

In addition to enhancing previous visual encodings we can make new ones!

Table Polygrams

The number of times an airplane struck a bird since 1991 by origin. Data from the FAA bird strikes database.

Characteristic:

Tabular encoding and layout of non-tabular data

Related to:

Pie chart, stacked bar chart, waffle plot

Tasks it's good at:

Part-to-whole and part-to-part for non-tabular data

Table Confusiongram

PERFECT CLASSIFIER				OK CLASSIFIER			bad classifer	
	Cat	Dog	abbit	Cat	og	Rabbit	Cat Dog	Rabbit
Cat	8	0	0	5	2	0	$8 / 6$	13
Dog	0	6	0	3	3	2	0	0
Rabbit	0	0	13	0	1	1	$0<0$	0
13 OBSERVED ${ }^{\text {Relative size deseribes sualit of flassification (bigge isw }}$ Color describes intance obsened (redder is more)								

Characteristic:

Re-encoding of confusion matrices
Related to:
Confusion matrices, corrgrams, table corrgrams
Tasks it's good at:
Identify outliers, both on a row-whole and cell
to whole level

Table Mosaicgram
 Characteristic:

multiple hierarchical categorical variables
Related to:
Mosaic, treemap, pivot table, sunburst
Tasks it's good at:
Hierarchical part-to-whole and part-to-part comparison

Ik

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
La	Hf	Ta	W	Re	Os	Ir	Pr	Au	Hg

Groups 3-12 of the periodic table valued by elemental density

Table corrgram

Characteristic:

One categorical variable along rows and columns

Related to:

Confusion matrix, adjacency matrix, corrgrams

Tasks it's good at:

Summary, lookup, observe outlier

American Region to Region Migration in 2016
(Via the census)

Table Formogram

Characteristic:

Matching an existing canonical table

Related to:

Shaded Matrix, the original table

Tasks it's good at:

Lookup, Detect Change, Observe Outlier

SETUP

(1) of (non-zero)
numbers

(2)

$$
\begin{aligned}
& \text { Make an educated } \\
& \text { guess about the } \\
& \text { final layout }
\end{aligned}
$$

Our gradient descent minimizes the relative error between expected area as well as the penalties from the following constraints

Color by value
Color by error purple is 5 , Yellow is high error/ brown is 1

This table cartogram was computed in 1.934 seconds it has 0.00 II\% average error

50 steps

100 steps

150 steps

200 steps

250 steps

300 steps

350 steps

